Journal of Statistical Physics, Vol. 35, Nos. 5/6, 1984

Dynamics of the Formation
of Two-Dimensional Ordered Structures
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The growth of ordered domains in lattice gas models, which occurs after the
system is quenched from infinite temperature to a state below the critical
temperature 7., is studied by Monte Carlo simulation. For a square lattice with
repulsion between nearest and next-nearest neighbors, which in equilibrium
exhibits fourfold degenerate (2 X 1) superstructures, the time-dependent energy
E(t), domain size L(z), and structure function S(g,f) arc obtained, both for
Glauber dynamics (no conservation law) and the case with conserved density
(Kawasaki dynamics). At late times the energy excess and halfwidth of the
structure factor decrease proportional to ¢ ~*, while L(r) o t*, where the expo-
nent x = 1/2 for Glauber dynamics and x = 1/3 for Kawasaki dynamics. In
addition, the structure factor satisfies a scaling law S(k, ) = >*S(kt*). The
smaller exponent for the conserved density case is traced back to the excess
density contained in the walls between ordered domains which must be redis-
tributed during growth. Quenches to T > T, T'= T, (where we estimate dy-
namic critical exponents) and 7 = 0 are also considered. In the latter case, the
system becomes frozen in a glasslike domain pattern far from equilibrium when
using Kawasaki dynamics. The generalization of our results to other lattices and
structures also is briefly discussed.
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1. INTRODUCTION AND REVIEW OF THE PROBLEM

Recently there has been considerable theoretical interest in the kinetics of
domain growth in systems which are quenched from high temperatures in
the disordered phase to a temperature below a transition temperature of an
order—disorder transition.('2? This is clearly a rather fundamental prob-
lem in the statistical mechanics of nonlinear phenomena far from equilib-
rium. In addition, this problem is of practical interest in metallurgy*'*?
and surface science.*»*” By describing this problem in terms of the
dynamics of random interfaces between domains, "*!~!® the relation to
problems like phase separation via nucleation and spinodal decomposition,*
pattern formation in crystal growth,” and critical dynamics in low dimen-
sions?” can be established.

Immediately after the quench the ordered phase appears in the form of
extremely small and irregular domains separated by walls, since the order
parameter always has some degeneracy corresponding to the symmetry
which is broken at the transition, and none of the degenerate orderings is
preferred. We here assume that only a finite number p of such degenerate
orderings exist, as is appropriate for lattice gas models with superstructures
commensurate with the lattice. For example, p =2 for the ordinary Ising
antiferromagnet, but we shall be mainly interested in orderings with p > 2;
with the respect to static critical phenomena®® such models may belong®
to “universality classes” such as the three- or four-state Potts model’ or the
XY model with cubic anisotropy.®V In all these systems we expect that
these domains coarsen, as the time ¢ after the quench increases, and thus
the (unfavorable) excess free energy due to the walls is reduced. In the late
stages, the domain sizes are much larger than all microscopic lengths. Thus
there exists a loose analogy with critical phenomena, where the order
parameter correlation length £ is much larger than all microscopic lengths
and as a consequence, all quantities in the critical region are described by
simple power laws, satisfying scaling relations, the exponents being the
same for all systems belonging to a given universality class.(?%*) Both with
respect to static®®?® and dynamic®®? critical phenomena, one understands
now well which universality classes exist and has reasonably accurate
estimates for the universal exponents involved. On the basis of the analogy
with critical phenomena, one also expects®®® the growth law for the domain

4 For a recent review, see Ref. 25.

5 For a review, see Ref. 26.

S For a review of the classification of models into universality classes in two dimensions, see
Ref. 29.

7 For a review, see Ref. 30.
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size L(t), and the decay law for the internal energy excess E(¢) — E(o0),
etc., to have power-law form,

L(ny<t*,  E(t)— E(c0)oct™” (1)

Here x, y, etc. are some “universal” exponents. Also the structure factor
S(q, 1), which is accessible in scattering experiments, can be cast in a scaled
form

S(q.1)=[L(1)]"S (kL(r)) )

d being the dimensionality, the wave vector k is measured relative to the
Bragg positions of the ordered structure Q, k = q— Q, and S(¢) is some
scaling function. Actually Eq. (2) was first proposed®*** and verified®>-*"
for spinodal decomposition, where Q = 0, and later generalized to ordering
kinetics.”-1%!2 Bven in the case of spinodal decomposition of solids, where
one thinks that x = y = 1/3,3%"43 the exponents are well established
only for the regime where the growing domains of the new phase take a
small volume fraction. For large volume fractions the growing domains
form an interpenetrating percolation network,? and it is conceivable that
there different exponents apply.(***® In addition, even for small volume
fraction it is difficult to obtain an accurate description of the scaling
function ${¢}.**) Even much less is known about ordering kinetics,
however: the possible universality classes and their exponents and scaling
functions have not yet been sorted out. Only for the case of twofold
degenerate ordering (p = 2), all theories agree that x = y = 1/2,'"2 and it
makes no difference whether a quantity other than the order parameter
(such as the density, for instance) is conserved. Even in this case, however,
there are still serious problems in understanding dependences on parame-
ters such as temperature.('®2? Even much less is known for orderings with
larger order parameter degeneracy p. Larger p are of great physical interest;
they occur for ordered monolayers at surfaces (e.g., p = 3 for the V3 X3
structure on triangular lattices, 3 X I structure on rectangular lattices; p = 4
for the 2 X 2 structure on square and triangular lattices, 2 X 1 structure on
square lattices, 4 X 1 structure on rectangular lattices; see e.g., Ref. 29) and
for ordered binary alloys (e.g., the CuAu ordering on the fcc lattice has
p = 3, while the Cu;Au ordering has p = 4; see e.g., Ref. 46 for model phase
diagrams). It was pointed out that for p > d + 1 one could have locked-in
domain configurations, which would result in a domain growth law as slow
as L(t) o Inz.("Y Tt is now realized that such a locking in of the domain
configuration at nonzero temperature can hardly occur, and thus this law is
not observed.('®!"*) Recent simulations of the p-state Potts model with
Glauber dynamics yielded!'” x =1/2 for p <6, while for 6 < p <26 the
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exponent seemed to decrease continuously with increasing p, and reached a
limiting value p ~0.41 for larger p. The limit p — oc might be physically
applicable to the growth problem of crystalline grains in metals.('” A
theoretical understanding of this p dependence of the growth law exponent
x so far is lacking. Very recently it was suggested®® that a chaotic
interplay of several growth mechanisms, which compete with each other
irrespective of the domain length scale L(#), might lead to an intermittency
effect (like in fully turbulent fluid flow) and then decrease the exponent x
from 1/2 to a nonuniversal smaller value.

In the present paper we contribute to this interesting problem of
sorting out the universality classes of domain growth by presenting and
analyzing Monte Carlo simulations of additional models. We concentrate
on a lattice gas model on the square lattice with repulsive interactions
between nearest and next-nearest neighbor interactions of equal strength.
For densities p = 1/2 or near that value, this model undergoes a second-
order transition to the (2 X 1) structure®® (while for densities around
p~1/4,3/4 the phase diagram still is controversial.(**>® This structure
has p = 4, but it does not belong to the four-state Potts universality class,
with respect to critical phenomena, but to the class of the XY model with
cubic anisotropy.®” Thus comparing our results with the four-state Potts
results of Ref. 17 has bearing on the question whether the domain growth
universality classes are uniquely specified by p already, or depend on other
symmetry properties as well. Secondly, we shall conduct a comparative
study of the model using both “Glauber dynamics”**** and “Kawasaki
dynamics.”***) The latter conserves the density p while the former does
not. Domain growth at conserved density corresponds to the physical
situation in case of chemisorbed systems, a large variety of which exist,®
and where domain growth can indeed be observed.***” While the p(2 X 1)
structure of O on W(112) studied in Ref. 24 has p = 2 and hence x should
be 1/2, in agreement with observation*¥ O on W(110) would be a
realization of a (2 X 1) structure with p = 4,59 for instance. “Kawasaki
dynamics”®**¥ then models surface diffusion events.” On the other hand,
the simulations using “Glauber dynamics™ correspond to physisorbed
monolayers (such as monolayers on grafoil'®), which are in thermal
equilibrium with a surrounding gas. Glauber dynamics®®*># then simulates
the random evaporation and condensation events of adsorbate atoms on
the surface.

We emphasize this distinction between the conserved and noncon-
served case, because we find, in contrast to the case p = 2, that they belong

8 For a review on chemisorbed monolayers, undergoing order—disorder transitions, see Ref. 56.
9 See also Ref. 58 for a detailed study of surface diffusion in the present model.
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to different universality classes of domain growth for larger p.m The
importance of density conservation for p > 3 will be linked to the excess
density contained in the walls between the various possible ordered do-
mains.

In Section 2, we give a description of our methods, and describe also
their application to quenches which lead to a final state above T, in the
one-phase region. In such a case, the approach to equilibrium is much
easier to understand theoretically, and hence the simulation of this problem
serves as an accuracy check of our methods. Particular attention will be
paid to finite size effects. Section 3 then describes our numerical results for
quenches to T < T, with “Glauber dynamics” and Section 4 the results for
quenches with “Kawasaki dynamics.” Section 5 is devoted to quenches
which lead to T = 0, where with Kawasaki dynamics a frozen-in glasslike
domain pattern is found. Section 6 is devoted to quenches leading to T near
T, and contains a discussion of the observed critical behavior. Section 7
then discusses the problem of excess density in domain walls for several
other structures and lattices, in order to show that our findings are not
restricted to the particular model which was investigated in detail. Section 8
then contains our conclusions.

2. SIMULATION TECHNIQUES AND THEIR APPLICATION
IN THE DISORDERED REGION

We consider a square lattice of linear dimensions W XN and
periodic boundary conditions. In “magnetic terminology,” the Hamiltonian
is given by

H = ~Jnn 2 SiSj—Jnnn 2 -HZS!"
iy by i=1
nearest neighbors next nearest neighbors
S,=x1 (3)

where J, J, . are interaction parameters between nearest and next-nearest
neighbors, /I is a magnetic field, and the sums {7, /> run over all pairs i, j
once. In most of our simulations, we choose J,, = J, . and the units of
temperature such that [/ | = 1. As is well known, Eq. (3) is equivalent to a
lattice gas where each site can either be occupied (¢; = 1) or empty (c; = 0),
using S; = 1 — 2¢,, which yields (omitting an unimportant constant)

%ﬂ = AU‘Na = _‘i)nn 2 cicj—~ (z)nrm z cicj (4)
) <f>
nearest neighbors next nearest neighbors

10 A very brief and preliminary account of these results was also given in Ref, 59.
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where N, =S¥ ¢, = Np is the number of occupied sites of the lattice (p
being the density when we measure all lengths in units of the lattice
spacing). The chemical potential in Eq. (4) is in our case

p=—8J,—2H (5)

and the interaction parameters ¢, ,$,. . are simply given as ¢, =4/,
Ponn = 4Jnnn‘

This model undergoes a second-order transition to a (2 X 1) structure,
at a critical temperature (for H =0 or equivalently, p = 1/2) of about
T.~2.1. Figure 1 shows the four types of ordered domains which are
possible in this model. In lattice gas terminology, the ordering consists of a
succession of alternating full and empty rows. The order is fourfold
degenerate, because full and empty rows may be interchanged (a,b), and
they may also be oriented along the y axis (¢,d) rather than along the x
axis.

Our simulations always start with either a random spin configuration
(Glauber dynamics) or a randomly occupied lattice gas configuration
consistent with a given density p. Thus we always start from infinite
temperature, although it would be a rather straightforward extension to first
let the system equilibrate at some finite (high) temperature, if one wishes to
consider quenches from that temperature. In the case of Glauber dynamics,
we randomly select a spin, S; and flip it if its transition probability*®

TW (S~ —8;)=1[1— tanh(85¢°/ T)] (6)

exceeds a random number { chosen uniformly from the interval [0,1}. In
Eq. (4), 7 is an arbitrary factor setting a time scale, such that W(S,~> —S))

a b
e 080 0Oeoe
ecCceo0 oceo e
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R X! oeoe
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0000 eo e

Fig. 1. Four ordered ground state configurations (denoted by a, b, ¢, d) of the square lattice
with nearest and next-nearest neighbor repulsive interaction. Occupied sites (“spin down™) are
indicated by full circles, empty sites (“spin up”™) by empty circles. This order is denoted as
(2 X 1) structure.
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is a transition probability per unit time for the spin flip, and 82# is the
energy change involved in the flip. 7 is the temperature to which we
quench. As is well known,*® Eq. (4) satisfies a detailed balance condition
with the thermal equilibrium probability of a spin configuration Py({S;})
o« exp(— 27 {S;}/ T), and the approach toward equilibrium is described by
a master equation for the probability P S0 that the configuration {Sj}
occurs at time 7,

GRS P == SWE>=5)P(S)0)

+ 2 W(=8>S)P({Sei» —Si },1) (7

Here the time ¢ is proportional to the sequential label of configurations
{S;}, generated, = »/ N if we measure time in units of attempted flips per
spin, choosing also the time constant 7 equal to unity. The zero of time
corresponds to the instant where the quench is performed (in a real
experiment this would mean an infinitely high cooling velocity). Similarly,
in the case of Kawasaki dynamics we randomly select an occupied site i and
a nearest-neighbor site /; of it. Then the chosen particle is moved to the site
I, according to the transition probability!*®

TW(c,~>¢)=3(1-¢)[1 - tanh(65#°/ T)] (8)

Here the factor (1 — ¢;) ensures that particles can only jump to neighboring
empty sites. Owing to this factor, Eq. (8) differs from Kawasaki’s original
model where also parallel spins can be exchanged.®® Time is then mea-
sured in units of attempted jumps per particle.

If one considers quenches to very low temperature, after a short
transient period almost all attempted spin flips (or particle jumps, respec-
tively) would involve an energy cost 857° > 0, and since then 8577/ T > 1,
are almost always unsuccessful since the transition probability is so small.
This inefficiency is particularly cumbersome for the “Kawasaki dynamics,”
since energy changes typically are nearly a factor two larger than for
“Glauber dynamics.” Thus a more efficient algorithm has been devel-
oped,®® which extends the so-called “n-fold way,” developed by Bortz er
al. Y for Glauber dynamics, to Kawasaki’s dynamics. This algorithm
samples preferentially the “active bonds,” which have 627”7 < 0, by selecting
particle-hole pairs not completely at random but with a probability propor-
tional to their transition probability. Thus every move is successful, but the
time increment after each move is different and has to be computed from
the algorithm itself. But is has been shown and carefully tested, that with
the appropriately rescaled time one obtains physical results from this
algorithm which are identical with the ordinary algorithm. While this new
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algorithm in the late stages of a domain growth simulation typically
performs one or two orders of magnitude faster than the standard code, the
situation actually is reverse in the initial stages, where anyhow a larger
fraction of particle moves has 6277 < 0. Thus simulations at quenches to
very low temperature were performed in a sort of “hybrid algorithm,”
which was the standard one up to a time between ¢ = 1000-3000 MCS (1
MCS = 1 Monte Carlo step per particle), and then the program switched to
the new algorithm. More details can be found in Ref. 60.

Lattice sizes used were in the range 40 X 40 up to 800 x 800, in order
to watch out for finite size effects; the bulk of our calculations were
performed for lattice sizes 80 X 80 or 120 X 120, respectively. There are
several ways in which finite size limits the accuracy of the simulation:

(i) The correlation length of order parameter fluctuations in an
equilibrium state is large. This occurs only for quenches very close to T,
and will not be important for the numerical data presented below.

(i) The average domain size L(¢) after some time ¢ is large.

Both for quenches to 7= T, and for quenches to T < T. (T > 0 for
“Kawasaki dynamics”) we expect L(f)—> oo in the thermodynamic limit.
Hence only such times ¢ were considered where L(r) <N [in practice we
stopped at L(f) ~\N /4.]

(iii) As there are only four kinds of domains present the volume
fractions of which will fluctuate, in the late stages there is the possibility
that the kind of domains whose volume fraction has a distinct majority
may start to form a percolating object (extending in one or both lattice
directions over the entire lattice). If this occurs, it surely affects the domain
growth rates. While we found evidence for this domain percolation rather
frequently, when L(t)={N /2, it occurred only very rarely for L(r)
<N /4. We expect this problem to be more serious for the case of three
dimensions, where percolation phenomena occur at much lower volume
fractions than in two dimensions.(®?

(iv) Owing to the periodic boundary conditions, wavevectors q in the
structure factor S(g,¢) can not occur in a continuum, but only for discrete
values.

qE{qx’qy}='\/7—V—_{Vx’Vy} (9)

with Ve, ¥, integers in the range —JN < Ve, ¥, <\/ﬁ . As a result not only
the structure factor S(q, ) of an infinite system is inaccurately represented,
particularly if L(£)> 1, but also mode-coupling effects due to the conserva-
tion law for the density in the case of “Kawasaki dynamics” will be
affected, since the conservation law leads to “hydrodynamic slowing

down”(®** for q— 0, but this slowing down is rounded off at the smallest
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wavevector |g| = #/yN . We shall study this phenomenon in more detail
for T > T, below.

(v) In a finite system, the energy per spin E will show spontaneous
stochastic fluctuations in thermal equilibrium; the mean-square amplitude
of these fluctuations is given by the fluctuation relation (E%) — (E)?
= T?C/N, C being the specific heat per spin in equilibrium. Consequently,
when we study the decay of the energy excess £(r) — (£ in a quench, we
are limited to times where this excess exceeds the level of statistical
fluctuations distinctly, if we use a single quenching run. It turns out that for
the system sizes used this hardly would be satisfactory, and hence it turns
out necessary to average the results over many quenching runs, using
different (but equivalent) initial conditions for each. Typically, we average
over the order of 10° samples, while for the 400 X 400 system we generated
four samples only; and for the 800 X 800 system we used a single run. Since
one large system is equivalent to a large number of smaller subsystems, the
statistical accuracy of the energy relaxation is automatically better for the
large system. Somewhat surprisingly, we did not confirm this averaging
property for quantities growing in time, such as the average domain size
L(¢): one run for the 800 x 800 system is, particularly in the initial stages,
significantly noisier than the average of 100 systems taken for the size
80 x 80, although this involves precisely the same number of total spins
(see Fig. 15 below). We feel that this is due to the fact that fluctuations
present in the initial state are also amplified during a transient period of
time, as the initially homogeneous state at the temperature to which the
quench leads is highly unstable. Thus the level of such fluctuations, which
are then seen as fluctuations in L(r), reaches a much larger value than one
would predict from the above statistical considerations. The transient
amplification of fluctuations around a state evolving in time so far has been
considered only in the context of spinodal decomposition.(®¥

We now return to problem (iv), discussing the relaxation of energy in
the regime of the disordered phase. With no conservation law, i.e., Glauber
dynamics, the energy after an initial transient period, where the relaxation
is governed by nonlinear effects, must relax exponentially fast toward
equilibrium. This “linear regime” where the equilibrium relaxation time
dominates, should near 7, only be reached, however, when E(#) — (E)
a |l = T/T,|'"® where a is the specific heat exponent and the proportion-
ality constant is of order unity.(®>®® In order to be able to see both the
nonlinear and linear regimes in the energy relaxation, we hence have
chosen T = 2.5 which exceeds 7, by about 20%. Figure 2 shows the results
of such simulations of relaxation for both Glauber and Kawasaki dynam-
ics. In fact, while the relaxation in the Glauber case is distinctly nonex-
ponential for £ << 10, the data are consistent with an exponential decay for
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Fig. 2. (a) Relaxation of energy per spin (measured also in units of |J,|) plotted vs. time on
the semilogarithmic scale (straight line indicates exponential decay), for Glauber single
spin-flip dynamics, H =0 (i.e., p = 0.5), and a quench temperature 7 = 2.5. Results for sizes
80 % 80, 120 X 120, and 200 x 200 have been averaged over 405, 81, and 81 runs, respectively.
(b) Same as (a) but for Kawasaki spin exchange (i.e., particle hopping) dynamics.

1= 10. It is quite hard to establish this asymptotic decay law precisely,
however, since for t =25 the energy excess E(#) — (E) is of the order of
1072 only, and in spite of the large number of samples hampered by
statistical fluctuations there already. But at least it is gratifying that there
are no statistically significant finite-size effects.

The simulation data for the case with conserved density at first sight
look similar (Fig. 2b). This fact is surprising since a simple argument®
shows that one there expects a different decay law. From Eq. (4) we note
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that the equilibrium energy can be written
(Ey == 2 6(9)Seq(q) (10)
q
where ¢(q) is the Fourier transform of the interactions

*(9) = $nn Z exp{ —iq-(r;, — rj)}
/, nearest
ne—i/ghborssof i

+ b > eXp{—iq-(r,— 1)} (11)
J» next nearest
neighbors of /

and S, (@) = {c(—q)c(q)) is the structure factor in equilibrium,
Seq(9) = % %exp{iq “(re =) e (12)

Now the conservation law of the density implies that in the limit ¢ — 0,
t— oo, qzt = finite, the structure factor approaches equilibrium exponen-
tially with a factor exp(— Dg?*), D being the (collective) diffusion con-
stant.(33346) A5 a consequence, the relaxation of E(¢) will contain a term

E()—<E)« %‘P(Q)Seq(q)exp(— Dy’) (13)

In the limit considered the g dependence of ¢(q)S.,(q) can be neglected,
and hence, in two dimensions

E (1) = (E) o« $(0)S4(0) ; exp(— Dg’t) qu exp(— Dgrycc ™! (14)

Additional exponentially fast decaying terms at late times always will be
negligibly small in comparison with this term exhibiting power-law decay.

In order to check for this decay, we replot the data of Fig. 2 in log-log
form (see Fig. 3). In the Glauber case, the data exhibit in this plot much
curvature and quickly reach a slope much larger than unity. This indicates
that a power-law decay is not appropriate, as expected. But in the Ka-
wasaki case, too, although there is less curvature in the late stages one
reaches a slope distinctly larger than unity, namely, about 1.2, in disagree-
ment with the theoretical answer, Eq. (14), that the slope asymptotically
should be unity.

The clue to explain this discrepancy lies in a small but systematic
variation of the data with finite size, which is beyond the statistical error in
Figs. 2b, 3b, in contrast to Figs. 2a, 3a. This small variation with size must
here be expected because of the discreteness of q space: thus the step in Eq.
(14) leading from X to [dq is not fully justified in a finite lattice. In F1g 4
we have studied this f1n1te -size effect, by just calculating 2q4exp(— Dg ) for
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Fig. 3. Same data as Fig. 2, but replotted in log-log form, for the Glauber case (a) and
Kawasaki case (b). Numbers at the curves indicate the effective exponent near that time. A
“length” L(7) included in case (a) is defined for T > T, from {N[43(r) + 3(1)]}'/%, of Ea.
(15).

finite lattices summing over the allowed ¢ values as specified in Eq. (9). In
fact, over the first two decades of decay (i.e., on a comparable ordinate
scale as Fig. 3b) one sees a pattern of behavior very similar to the
simulation: there are small but systematic size effects leading to a quicker
decay than occurs in the infinite system, and giving rise to a curvature
which expresses crossover to an asymptotically exponential decay propor-
tional to exp(— Dw%/N), rather than exhibiting clearly the correct r~'
decay law.

We have presented this example in detail because it vividly illustrates
the difficulty of properly analyzing computer experiments on asymptotic
decay laws (or growth laws, respectively): with somewhat less statistics, one
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Fig. 4. Log-log plot of 3 exp(— Dg*) vs. Dt for various finite lattices.

would not be able to see any systematic size effects in Figs. 2b, 3b at all,
and in the absence of knowledge what to expect one might easily conclude
that the exponent of the decay is 1.2 or even larger. As a consequence, it is
necessary to obtain data with very good statistical accuracy over as wide a
range of lattice sizes and of times as possible, in order to draw reliable
conclusions.

3. ORDERING KINETICS WITH “GLAUBER DYNAMICS”

Again a random spin configuration is used as initial state for the
quench, but now we consider final temperatures 7 and field H such that
the equilibrium would be an ordered state (Fig. 5). Only the case H = 0 has
been studied and hence p = 0.5, and the temperatures chosen were 7" = 1.33
and T = 0.75 (temperatures in the critical region, 7'=2.0, 2.1, and 2.2,
respectively, will be considered in Section 6, while the case 7T = 2.5 was
discussed in the previous section). Dividing the system into four sublattices
corresponding to a 2 X 2 unit cell, the two-order parameter components i,
Y, of the (2 X 1) structure (Fig. 1) can be expressed in terms of the
sublattice magnetizations m,, m,, my, my as {m, = (1/N)> .., S;}

yir=mptmy—my—my,  y=myp—my—myt+my (15)
The four fully ordered possibilities of the (2 X 1) structure correspond
simply to the cases (Y, = L, ¢, =0), (Y, = — L, Y, =0), (¥; =0, ¢, = 1), and
W, =0, ¥, = — 1), respectively. In the simulations of quenching, all four

types of ordered states will occur and hence it is convenient to describe the
degree of order by a root-mean-square order parameter [3(¢) + 3(#)]'/?
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Fig. 5. Phase diagram of the Ising square lattice with nearest and next-nearest neighbor
repulsion. Solid curve is the phase boundary between ordered and disordered states according
to the transfer matrix calculation of Ref. 50, the dash-dotted curve the phase boundary
estimated in Ref. 49 from Monte Carlo simulations on a 40 X 40 lattice, and the broken curve
is a contour of constant correlation length £ = 40, according to Ref. 50. Open circles (crosses)
indicate states to which quenches with nonconserved (or conserved, respectively) density have
been made. Note that the identification of the structures near p = 0.25, 0.75 is controver-
sial,(**~2 and hence quenches only in the region of the uncontroversial (2 X 1) structure are
made.

= [¢*(1)]'/% By decomposing 11/ into its contributions from individual unit
cells ¥,() we obtain ¢*(1)= N *3 4, (z) Y,(n). In the late stages of
growth, the scalar product §,(7) - §,(¢) ~ v, ¢T being the equilibrium value
of the order parameter if i and j are sites within the same domain; if i and j
are in different domains, the projection will average to zero. Hence we can
estimate the order of magnitude of ¥3(¢) as follows:

Y1)~ N 7N (D)L (W7 (16)
where the 3, was broken up in a sum over the N,(¢) domains existing at
time ¢, and the sum X ,¢;(1) - () where i, j are restricted to be in the same
domain, of average linear dlmensxon Ld(¥), yields Ld(t)\pT Since any site

must belong to a domain we conclude N = N,(¢)L3(¢) and hence Eq. (16)
reduces to

V()= N"'Li (W7 (17)

This consideration suggests to define an effective domain linear dimension
L(1) as follows:

L@ty =N [43(1) + (0] /¥r (18)
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In an ordered monodomain sample, we have L(r) =N , of course. We also
note that the quantity Y*(#)N? would be experimentally simply accessible
as the sum of the scattering intensities at the Bragg positions Q,, Q, of the

ordered structure,

V(N = S(Q, 1) + S(Q,., 1) (19)

where Q, = #(1,0) and Q, = #(0, 1) in our case.
Figure 6 shows then both the domain size L(#) {Eq. (18)} and the
excess energy AE(:) = E(t) — {E). After a short transient period, both

102 — —T
a
f'/
05
0 - ~ 8
"'.'/
Lib )

AE(H) ™~ .05
~

107! L

107

ALl

L
10 1

y=05-"
1 10 102 t 103

1

Fig. 6. Log-log plot of AE(¢) and L(¢) vs. time, for the temperatures 7 =0.75 (a) and
T =133 (b) Numbers at the curves are estimates of the exponents x and y, respectively.
Temperature is measured in units of |/,|, and time in Monte Carlo steps per spin. Both cases
represent averages over 45 samples of 80 X 80 lattices.
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L(t) and AE(r) follow nicely straight lines, i.e., they evolve in time
according to the proposed power laws, Eq. (1), with

x=y=1/2 (20)

independent of temperature. The scaling relation x = y has been generally
proposed®® on the grounds that in the late stages the excess energy in the
system is due to the energy contained in the domain walls, and hence
should be of order |J, |N,()LJ~'(t)/N in d dimensions. Invoking again
N, () LZ(t) = N, the relation AE(t) < L™ '(¢) follows.

The exponent x = 1/2 agrees with results obtained for Ising models
with nonconserved order parameter and p = 2(!37%1219 a5 well as with
recent numerical simulations for a p-state Potts model'” with p<6. Our
present results, as well as those of Ref. 17, indicate that the “locking-in
mechanism” of domains'"'" suggested to occur for p > d + 1, which would
apply in our case, is not effective [as mentioned in the Introduction, this
mechanism would imply L(#) xInz, ie., x = y = 0].

We feel that the result x = 1/2 is not just due to a trivial extension of
theories such as those!*>'® which deal with motion of random interfaces,
because in our model there occur several types of walls (Fig. 7). While both
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Fig. 7. Different types of walls between the ordered phases a, b, ¢, d of the (2 X 1) structure
(cf. Fig. 1): (a) “superheavy” wall; (b) “superlight” wall; (¢) “heavy” wall; (d) “light wall”;
(e) “antiphase boundary”; (f) “45° wail.” Underneath the arrangement of full and empty sites
for each wall we display the profiles 7i(z) and E(z) of the magnetization and the energy,
averaged along the wall, in the direction z perpendicular to the wall. All cases refer to 7= 0.
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the “superheavy” and “superlight” wall are energetically very unfavorable,
and hence such walls do no longer occur after a short transient period, the
energy excess of the other types of walls is the same at 7= 0. Thus one
may have competition between different types of walls. Of course, one
might expect that at finite temperature entropy considerations might lift the
degeneracy between these walls, leading to a lower free energy of one (or
some) wall(s) than the other ones. If this occurs, one would expect that the
fraction of less favorable walls diminishes with increasing time after the
quench.

In order to check whether this actually happens we have printed out
many “snapshot pictures” of domain patterns, characterizing the various
types of walls simply by their density excess (e.g., Fig. 8). At least at the
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considered temperatures, all types of walls seem to survive with about equal
probability. This means that either the walls remain degenerate in free
energy up to the critical point, or their free energy differences are so small
that one would have to watch the domain pattern over a significantly
longer period of time than we were able to do to see this effect. Of course,
for ¢, # é,,, @ simple “bond-counting” analysis shows that already at
T = 0 the degeneracy is lifted.

Next we turn to the behavior of the structure factor. We have obtained
both S(Q, +k, 1) and S(Q, + k, #), choosing the direction of k perpendicu-
lar to Q, or Q,, respectively, since then the calculation of the structure
factor simplifies and the program runs much faster than for general
direction of k. Then we add both terms together and thus obtain the analog
of Eq. (19) for finite k. By this procedure we greatly reduce the statistical
fluctuations. The resulting structure factor S(gq,¢) (Fig. 9) is qualitatively
similar to structure factors obtained for Ising models with p = 2.0
Figure 10 demonstrates that for 7= 0.75 and 1.33 it indeed nicely satisfies
the scaling hypothesis, Eq. (2). Thus the halfwidth o(#) of the structure



1500 T T T T T T T T
Fig.%9a
1000 |- B
o
A
500 -
0Ll 1 1 1 L 1
090 095 1.00 105 110
q/m
1500 F T T L T L T L
Fig.9b 400
300
1000 r— E
o 200
%)
500 160 :
l» 100
63
Lo
0 1 { I 1
090 095 100 105 110
q/mn
750 T T T T T T
Fig.9c
500 - .
S
%]
250 b
0 Il 1 I} i Il 1
090 095 1.00 105 110
g/n

Fig. 9. Structure factor S(g, ) plotted vs. ¢ at H =0 and 7 = 1.33 (a), 0.75 (b), and 2.0 (c).
Parameter of the curves is the time ¢, measured in Monte Carlo steps per spin. Data were
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with A/t ~0.1.
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factor also satisfies a power law, Fig. 11:
o(ryct™, with x,=x=1/2 (21

It would be interesting to calculate the scaling functions both for the case
p =2 and the present case with high precision, in order to be able to check
whether they also are identical. For T'= 2.0, on the other hand, we observe
more pronounced deviations from scaling (Fig. 10c), and the various
exponents seem to no longer agree with each other (Fig. 11c). We interpret
these observations as crossover toward critical relaxation (Section 6).

As a remark on the accuracy of our numerical procedures, we note
that [S(w,)]'/?, which has been smoothed by integrating over time inter-
vals At (Fig. 9), agrees very well with the data for L(r) obtained directly in
independent calculations from Eq. (18) where ¢i(¢), y3(¢) were recorded at
much shorter time intervals and also the smoothing interval could be
chosen much smaller (i.e., of the order of the distance between two
successive points in Fig. 6 at each time).

4. ORDERING KINETICS WITH “KAWASAKI DYNAMICS”

In this section we consider quenches to the same temperatures in the
ordered region as in the previous section, but treat now the case of
conserved density. Again we start with a discussion of the time evolution of
the domain size L(¢) and energy excess AE(¢), Fig. 12. While for T = 1.33
after a short transient period both L(¢) and AE(r) evolve according to the
power laws Eq. (1), over several decades in time, with

x =y~0.35 (22)

the power-law description for T = 0.75 is not so good: over an intermediate
interval of domain sizes 4 <5 L(f) << 10, a power-law behavior is observed
but with distinctly smaller exponents, x = y ~0.20. The curvature seen
particularly in AE(¢) at late times may indicate that there a crossover sets
in to the exponents quoted in Eq. (22). Since we find (Section 5) that in
quenches to T =0 with conserved density the system gets trapped in a
metastable domain state, i.e., curves for L(r),AE(¢) bend over to a finite
value L(oo) and a nonzero value AE(cc) at late times, i.e., x =y =0 at
T =0, we feel that the data at 7= 0.75 are affected by crossover effects,
i.e., the system nearly gets trapped over intermediate time scales.

Of course, arguing that the simulation data for 7= 0.75 may reflect
crossover one must ask oneself whether the data for 7= 1.33 may be
affected by crossover as well. It is difficult to rule this out with certainty:
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at temperatures 7 = 1.33 (a) and 0.75 (b). In case (a) the points are averages of 32 samples of a
120 X 120 system; in case (b) the lattice sizes and number of samples is indicated in the figure.
Numbers at the curves indicate the estimates for the resulting exponents x, y.

taking data closer to the phase boundary at 7'= 1.33 by varying p (Fig. 13)
one starts to see effects of crossover toward critical relaxation (see Section
6): effective exponents x, v are no longer equal, while x . stays around
the value given by Eq. (22), y.;; seems to increase significantly. As we shall
show in Section 6, the scaling law x = y is no longer valid for critical
relaxation. Similarly, when we stay at p = 1/2 but increase 7 to 1.61, the
exponent x, increases to about 0.4, while y stays at about 0.35. Although
such a systematic variation of exponents with parameters such as density or
temperature could be a real effect, as suggested by Furukawa,*® our data
are cerlainly also consistent with the interpretation that in the limit ¢t o
the exponents x, y are universal inside the whole ordered region 0 < T
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Data points are averages over 25 runs.

< T.(p), but near T=0 and near T.(p) one observes crossover to other
mechanisms controlling the asymptotic relaxation at 7= 0 and T = T.(p),
respectively. The correct values of the asymptotic exponents are then most
reliably estimated in a region of the phase diagram where one stays away
from the crossover regimes as far as possible. Since the point 7 = 1.33,
p=1/2 fulfils this criterion, the time evolution at this point shows no
evidence for crossover, and the exponents x, y estimated for other points in
the phase diagram around this point (Fig. 5) are similar, we suggest that Eq.
(22), within error limits of about £0.05, should be the true asymptotic
exponent. This conclusion is corroborated by Fig. 14, where the exponent
ye(t), fitted to various time intervals, is plotted vs. temperature for p
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= 1/2. The proposed asymptotic behavior for y (t = o0) = y is
y=0, T=0;, »y=035x£005 0<T<T,;

23
Y=o T=T; y=1 T>T, *)

Since in the previous section we have seen that the result y =1 for T > T,
is easily missed because of finite-size effects, it is absolutely essential, of
course, to make sure that the estimates given in Eqgs. (22), (23) are no
artefacts of finite size as well. Thus we have studied the time evolution at
T = 1.33, p = 0.5 varying the lattice size from 80 X 80 to 800 X 800, Fig. 15.
It is seen that the resulting estimates are scattered in the interval 0.3 << x,
» <04, but we are not able to detect any systematic decrease of y with
increasing size, as it happened for 7' > T.. The absence of finite-size effects
which would be due to the lack of small k£ in terms relaxing with factors
e~ Derk g plausible, of course, since at the chosen temperature the collec-
tive diffusion constant D in thermal equilibrium is extremely small,®® and
hence the “bulk™ contribution to the energy relaxation is negligible in
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comparison with the contribution due to walls. For << 10% there is a
consistently smaller effective exponent in the energy relaxation. We inter-
pret this as the onset of crossover effects to the locking-in of domain states
at T =0, where over intermediate regime of times (seen more clearly at
T =0.75) exponents intermediate between y =0 and y = 0.35 are seen.
Note that for YN > 200 the average domain size reached at the time where
the simulation was stopped is still about an order of magnitude smalier
than VN, or even less. Thus the other finite size effects discussed in Section
2 are not expected to be of importance here either.

What is remarkable in Fig. 15 is the slow approach to the thermody-
namic limit of L(#), as far as statistical fluctuations are concerned. This
behavior is in marked contrast to the behavior of AE(?): fluctuations of
AE(t) are reduced with increasing size N in the expected way. This
observation calls for a statistical theory for fluctuations of domain growth.

The structure factor S(g, ) was obtained as described in Section 3 and
is shown in Fig. 16; again evidence for the scaling law Eq. (2) is obtained
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(Fig. 17). It appears that the scaling behavior is not strictly valid when the
time variation of L(7) is not yet in the asymptotic regime, as can be seen
from the systematic discrepancies in the wings of the distribution (Fig.
17b). This observation is further evidence that the exponents x ~ y &~ 0.23
as obtained in Fig. 18b are not yet characteristic for the asymptotic
behavior but rather due to crossover effects, as discussed above.

Figure 19 then shows typical snapshot pictures of the domain patterns

and the type of walls prevailing during domain growth with conserved
density. As in the nonconserved case, domain shapes are rather irregular

throughout growth, and four types of walls (“heavy,” “light,

% ¢

antiphase,”

“45 degree”) seem to persist throughout the late stages.
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It then is natural to ask, why the conservation of density should make
any difference and lead to even a significantly smaller value of the
exponent x than in the case without conservation law. The answer to this
question is simply that the density excess (or deficit, respectively) contained
in the “heavy” or “light” walls needs to be redistributed by long-range
diffusion, when the density is conserved, and some walls have to grow or
shrink and finally disappear, or to diffuse as a whole, in order to allow for
the growth of the domains. Clearly, the larger the domains become the
smaller the gradients in the diffusion fields must become, similar as in the
Lifshitz—Slyozov mechanism of coarsening in the late stages of phase
separation.®” Since in the latter case this slowing down of the diffusion
controls the growth rate and leads to the law L() o t'/%, we suspect that
Eqgs. (22), (23) really should be interpreted as x = y = 1/3 (0 < T < T,) for
the present case as well.

In order to make these ideas more quantitative, we have studied the
excess density (in spin terms, the excess magnetization Am) in subsystem
blocks of size Ly X Lg, for Ly from 4 to 20, see, e.g., Fig. 20. It is seen that
for smaller Ly the distribution sharpens up much more quickly than for
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(b), and 16 X 16 (c), averaged over the time intervals as indicated in the figure. Data were
taken for a 120 X 120 lattice at 7' = 1.33.
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Fig. 21. Time evolution of the mean square density fluctuation Am’(z)/Am*(0) (a) and
replotted in scaled form (b). The bars indicate time averaging (to smooth the data) over
intervals as shown in Fig. 20.

larger Ly. This fact is seen more clearly in Fig. 21a, where the decrease of
the relative width of these distributions is plotted vs. time. Defining a
characteristic time ¢(L,) for each block size by

L{t(Lg)} =Ly (24)

we can find #(Ly,) immediately from Fig. 12a. Rescaling ¢ with #(L,) one
finds that now all curves MZ(T) /MZ@ superimpose on a single curve
(Fig. 21b). This result is very gratifying: it directly shows that the time
decay of the long wavelength density fluctuations is indeed coupled to the
time evolution of L(¢), and in fact controls it!

5. QUENCHES LEADING TO 7 =0 AND EVIDENCE
FOR “GLASSY” STATES

Of course, the slowing down of the growth as T was lowered to 0.75,
encountered in the previous section, makes one suspicious of what would
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happen when one quenches the system to exactly 7 = 0. Figure 22 shows
that then the growth of the domain size stops at about L(¢) ~ 10, and also
the decrease of the energy excess stops at about the same time (7~ 10’
MCS per particle). In order to check for possible logarithmic laws L(z)
o In,"D we also plotted the energy excess versus this variable (Fig. 22b).
It is seen that such a logarithmic law is not obeyed over any significant
range of times. Unfortunately there seems to occur some systematic varia-
tion with finite size in our data, for which we do not have an explanation.
Thus also our results for the structure factor in these quenches to T=0
have to be taken with care (Fig. 23). It is quite remarkable, however, that
the structure factor gets extremely broad wings. This shape of S(g, ) is in
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Fig. 22. (a) Log-log plot of A(#) and L(z) vs. time, for the temperature T = 0 and conserved
density p = 1/2. Lattice sizes and number of runs are indicated in the figure. (b) Energy excess
plotted vs. In¢ for three lattice sizes. (c) Snapshot picture of frozen domain configuration
(same notation as in Fig. 19) at ¢ = 1200 MCS.
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marked contrast to the scaled structure factor appearing in the late stages
of finite temperature quenches (Fig. 17a).

Finally Fig. 22c exhibits typical pictures of the frozen-in glassy config-
urations.

6. SIMULATION OF QUENCHES INTO THE CRITICAL REGION

We first return to the case of single-spin flip dynamics (i.e., no
conservation law). Figure 24 shows results for the time evolution of the
energy excess and L(¢), which in this case is redefined as L*(¢) = [¢i(f) +
Y2(1)]. Tt is seen that the exponents x,, y. defined in analogy to Eq. (1)

L)y,  E(t)—E(0)xt™  T=T, (25)

are no longer equal to each other: x. is nearly temperature independent
over the time interval shown, x, ~0.42 at T = 2.0, x, ~ 0.34 at T~ 2.1 (not
shown) and x, =~ 0.32 at T = 2.2. In contrast, y, ~ 032 at T = 2.0, y, ~0.40
at T~2.1 and between 0.5 and 1.0 at 7 =2.2. The strong curvature of
AE(t) on the log-log plot for T = 2.2 is qualitatively similar to the behavior
at T'= 2.5 (see Fig. 2(a)), i.e., it indicates crossover to an exponential decay
which should occur for times ¢ of the order of the equilibrium relaxation
fime 7,

T £, (26)

where £ |l — T/T.| 7 is the order parameter correlation length, » its
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Fig. 24. Log-log plot of L(t) and AE(#) vs. time for the model without conservation law at
H=0(p=1/2), T=2.0 (a) and 2.2 (b). Numbers at the curves indicate effective exponents
near the time where they are shown. Data are obtained from 80 x 80 and 120 x 120 lattices.
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critical exponent®® and z is the dynamic critical exponent.*? Similarly,
we then expect that for 1 ~ r in L%(f) a crossover sets in where L%(¢) starts
to saturate at its equilibrium value, the order parameter susceptibility xr
which near T, behaves as®®® x, o |1 — T/T,|~" o« £*/*. This crossover can
be expressed more quantitatively by postulating for L(#) a dynamic scaling
function3*¢®

LYty = £77f(1/ Ty = & f,(677) (27)

where the function f(u) {or f,(u), respectively} tends to a constant value for
u—> 00, in order that L2(¢t — o) yields x,. On the other hand, at T, £ = «
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and £ then must cancel out from the expression Eq. (27), since L(¢) still is
well defined and finite at 7. This consideration hence yields that f,(«) for u
small must behave as a power law, f,(u) « u**, with

x,=v/2zv (28)

Since the data for T < T, also show crossover at t~r to the domain
growth ruled by the exponent x = 1/2 found in Section 3, we conclude that
the exponent x, is probably in between the values found for 7' = 2.0 and
2.1, but closer to the latter,

x, ~0.37 + 0.03 (29)

Now the static exponents y, » of this model are nonuniversal, i.e., they
depend on the ratio of interaction constants, magnetic field, etc.?1#%¢7
- For our case (|J ;| = |/ mals H = 0) they have been estimated by standard
Monte Carlo finite-size-scaling analysis'*® as »~0.85, y~ 1.5 and by
Monte Carlo renormalization group®” as p = 0.87 = 0.02 {asserting that
v/v = 1.75 is universal and has the same value as in the ordinary nearest-
neighbor Ising model}. Hence Eqgs. (28) and (29) yield immediately the
estimate for the dynamic exponent z,

z~24£02 (30)

A similar reasoning can be presented for the excess energy, since the critical
part of the energy scales as || — T/T,|' ® o (1 — a)/», which is rewritten
using the hyperscaling relation® dv=2y=2—a as [l - T/T,})' ™
o £ 72*71/7 The dynamic scaling law analogous to Egs. (27) and (28) hence
is found as

E(t) = E(w)=¢ 77716 77) - (3D

where the function f,(#) must behave as In f,(u) o —u for u — oo, describ-
ing the exponential decay of the excess energy to zero, as found in Section
3. Since E(t) — E(o0) is finite and nonzero at 7, the powers of £ must then
cancel in Eq. (31), which is only possible if f,(#) oc u ™%, with

y.=02-1/v):z (32)
Concluding from our data that y, should be in between the values found for
T =20 and 2.1, but probably closer to the minimum value found (any

crossover effects should enhance rather than decrease y, in this case), we
suggest

y.~0.35 £ 0.03 (33)
Since 2 — 1 /v ~0.85 = 0.03, Egs. (32) and (33) again lead to Eq. (30). This

result that there is a unique exponent z for all relaxing quantities is known
as “extended dynamic scaling.”(*?
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While the exponent x =y =1/2 for T< T, both for the present
model and the four-state Potts model{!” the critical behavior of the two
models renders them into different universality classes. The dynamic expo-
nents z for the present model has not been studied before, while the
estimates for z in the four-state Potts model lie in the range 2.5<<z <5
2.7.686% Thus, with the accuracy presently available, it is not yet possible
to clearly distinguish the dynamic universality classes! For better accuracy,
much larger systems are necessary to avoid finite-size rounding, and to
obtain better statistics. The recently developed special purpose~Monte
Carlo processors(’” would be ideal for this purpose. Also experimental
studies of critical dynamics of adsorbed layers via quenching experiments
into the critical region would be desirable (other tools familiar from studies
of three-dimensional systems, such as inelastic neutron scattering, hardly
are applicable for adsorbed layers).

We next turn to critical quenches in the model with conserved density.
The above considerations immediately carry over to the present case; only
fo(u) < u™! for large u, rather than decaying exponentially. Our numerical
results are similar to the case without conservation: x,~0.35 at T=2.0
and 2.1, while some crossover to saturation is seen at 7 = 2.2; similarly,
y,~032 at T=20, y, ~0.35 to 0.30 at T = 2.1, while crossover to the 1 /¢
relaxation characteristic for the disordered phase (Fig. 2) is seen at T = 2.2.
Thus, we conclude

x,~0.35 = 0.03, y.~0.33 +0.02 (34)
Wy ———————r— 17— 7 T
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Fig. 26. Structure factor S(g, 7) plotted vs. g at p = 1/2 for the model with conserved density
at T=2.0 (a) and T = 2.1 (b), for a 160 X 160 lattice and averages over 250 runs at 7 = 2.0,
500 runs at 7= 2.1. Numbers at the curves show the time ¢, measured in Monte Carlo steps
per particle.
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which yields as our estimate for the exponent z in the model with conserva-
tion law, from Egs. (28), (32),

22255015 (35)

While the estimates Eqgs. (30), (35) within their error bars overlap strongly,
there is no reason to believe that they are exactly equal. In fact, according
to the classification of universality classes'*? the present model belongs to
class “C,” while the model without any conservation belongs to class “A.”

We also have obtained the structure factor S(g,f) for the present
model in the critical region (Fig. 26), and study its scaling properties in
Figs. 27 and 28. Again scaling of S(g,¢) is well obeyed. A comparison with
Fig. 17a reveals that the present scaling function S(u) decays much slower
in its wings. To interpret this behavior, we note that dynamic scaling in the
critical region implies*?

S(g,1) =&"/¥S (k& 1t %) (36a)
i.e., in the regime where S(7,¢) is far from saturation we have

S(g,0)/S(m 1) = (5 )/7S (k1) (36b)

Right at 7, the £ factors must cancel out, implying that f(kg, t§ %)
———>(t£ ~%)"7/#8(kt'/?). Hence we find that the halfwidth o(¢) of the

£—>w
structure factor must behave as

o(tyect™ V5, T=T, (37a)
10 T T T g T
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Fig. 27. Structure factor plotted in scaled form, normalizing S(g, r) by its peak value S(, 1)
and g/« — 1 by the halfwidth o(z), for T=2.0 () and T = 2.1 (b).
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and S(q,r) right at T, scales as
S(g.1) = t7/7S (kt'/?) (37b)

We emphasize that this result is no longer of the form of Eq. (2), since
defining a length I(f)= o7 !(t)c ¢t one rather gets S(g.t)= [P’
S (kI(r)}, the power y/» = 2 — q rather than the dimensionality d as in Eq.
(2). Note that the quantity L(z) is this section has no longer the dimension
of a length and also does not play the role of a characteristic length, it is
I(t) which is the characteristic length of the problem. Unfortunately the
data for o(7) at T = 2.0 exhibit much curvature, presumably due to cross-
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Fig. 29. Log-log plot of the scaled function S(g,?)/S(w, 1) vs. (¢/7—1)/o(t) at T=2.1
and 7 = 1.33. The broken curve in the right part is only a guide to the eye.

over effects; but for 7= 2.1 one can see that the exponent 1/z estimated
from Eq. (37a) is 1/z ~0.41, i.e., within our error estimates consistent with
Eq. (35).

From the fact that S(g, ) for g 3 7 should reach a finite limit at large
times we immediately find, from Eq. (37b)

-v/» —(2- 3 —(2-
S(q#w,oo)ock 1/ = fe n), S(u)ugcwu (2—m) (38)

Figure 29 shows that our data at 7 = 2.1 are indeed consistent with Eq. (38)
{n=11.1" For comparison, the data for the scaling function of Fig. 17a
at 7= 1.33 are included: it is seen that the behavior is quite different, if
one would try to fit a power law one would obtain. a rather large exponent,
of the order of 3—4 instead of 1.75. We do not have enough reliable data for
(a/m—1)/0(¢) > 1 to judge whether such a power law is a faithful
representation of the scaling function §(u) for large u. The prediction in the
case p =2 (and density not conserved) that('"® S(u) cc u™> (for d =3) is
possibly also consistent with the present case.

7. DOMAIN WALL EXCESS DENSITY
IN VARIOUS OTHER TWO-DIMENSIONAL STRUCTURES

In Section 4 we have seen that the conservation law for the density
leads to domain growth exponents x = y = 1/3, rather than x = y = 1 /2 as
in the case without conservation law, and that the crucial point for this



580 Sadiq and Binder

change of exponents is the excess density contained in the domain walls. It
is hence natural to ask, whether this mechanism is particular to the
structure chosen, or whether it carries over to other cases as well.

First we consider the c(\/i X2 ) structure, for which p = 2, and which
has been studied in extensive previous work. Figure 30 shows that the
domain walls oriented parallel to the lattice direction do rof contain excess
density. The “45° wall” would contain excess density, but it energetically
clearly is unfavorable, and hence in the late stages such walls should not
occur. Thus, we predict that the conservation law of the density should not
affect the exponents x, y, as there is no excess density in the walls. This is
consistent with theories {e.g., Ref. 6} and simulations {e.g., Refs. 10 and
20)}.

The other structure with p = 2 is the p(2 X 1) structure; on a rectangu-
lar lattice it is reasonable to have interactions in the two lattice directions
different from each other, and then the degeneracy between the two cases
(a,b) and the two cases (¢,d) in Fig. 1 is removed. The only important wall
to consider is the “antiphase wall” of Fig. 7, which does not involve excess
density as well. Hence again conservation of density should have no effect,
and thus we predict x = y = 1/2 to apply, consistent with observation.*#

The situation is quite different, however, for all cases with p > 2.
Consider first the (3 X 1) structure on the centered rectangular lattice (Fig.
31). Depending on the interaction energies which stabilize this structure, it
may be more favorable to have “antiphase boundaries” (Fig. 31a, b) or
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Fig. 30. “Antiphase boundary” (a) and “45° wall” (b) between the two types of ordered
phases of the c(\/z X2 ) structure. Underneath the arrangement of full and empty sites for
each wall we display the profiles #(z) and E(z) of the magnetization and the energy, averaged
along the wall, in the direction z perpendicular to the wall. Both cases refer to 7T = 0.
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“heavy walls” (Fig. 31c, in the case of density p = 1/3; for p = 2/3 the role
of light and heavy is interchanged, of course). But now both types of walls
exhibit excess density, and hence we predict that conservation of density
should lead to domain growth exponents x = y ==1/3 as in the present
study. It would be interesting to check this experimentally for the adsorp-
tion system H on Fe(110)(7" in which this structure has been observed.
The situation is also similar for (p X 1) structures on this lattice with p > 4.
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Fig. 33. Same as Fig. 32 but for the (2 X 2) lattice. Energy excess is only qualitative.

We now turn to the 3 X3 structure on the triangular lattice, Fig. 32,
which has p=3 at p=1/3 since then the sites of one of the three
sublattices 1,2,3 will be occupied, and the other two are empty. This
structure already occurs if there is only a nearest-neighbor repulsive interac-
tion on this lattice. Domain walls of the types a,b are energetically
favorable, while the type ¢ is unfavorable; but again every wall involves an
excess density, and hence conservation of density should lead to x =y
= 1/3 as the present study.

More complicated is the case of the (2 X 2) structure which may occur
on the triangular lattice (Fig. 33) or square lattice at p=1/4 or p=3/4,
respectively. In order to stabilize it on the triangular lattice, interactions up
to at least next-nearest neighbors need to be included. Depending on the
values of the interaction energies, it may be more favorable to have either
“heavy walls” (g, c), which do involve excess density, or “antiphase bound-
aries” (Fig. 33b), which do not, at least in the ground state. It is conceiv-
able, however, that at nonzero temperature these walls acquire excess
density as well owing to the phenomenon of “interfacial adsorption” which
has been shown to occur for p > 2 in various models.”> Thus we conclude
that the typical behavior of models with p > 2 with conserved density will
be qualitatively similar to the results obtained in the present study, with
x = y = 1/3 rather than 1/2.

8. CONCLUSIONS

In this paper, extensive simulations of quenching experiments are
reported, both for a model without any conservation law (“Glauber dynam-
ics”), and a model with conserved density (“Kawasaki dynamics™); this
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two-dimensional model undergoes a second-order transition from a disor-
dered to a fourfold degenerate ordered state, and we consider quenches
both to states within the disordered phase (leading to a state either above
the transition or exactly at criticality) and to states within the ordered
region (at nonzero as well as zero temperature). By carefully examining
effects of finite size and of various crossover phenomena, we are able to
sort out the asymptotic exponents governing the time evolution of the size
of the growing domains (below T.) or the susceptibility (above T,), the
excess energy and the structure factor.

While above T, the approach to equilibrium of all considered quanti-
ties is exponential, apart from the excess energy in the case with conserved
density which relaxes inversely proportional to the time after the quench,
we find power laws for the relaxation right at 7, which via dynamic scaling
can all be related to a unique exponent z, with z~2.4 = 0.2 (Glauber
dynamics) and z ~2.55 * 0.15 (Kawasaki dynamics). Various evidences for
the validity of dynamic scaling in both models is presented. Corresponding
experimental studies in various chemisorbed monolayers at surfaces would
be valuable.

Below T, the domain size L(¢) behaves as L(¢) o ¢*, the halfwidth of
the structure factor o(r) o ¢~ ™, the excess energy with L™, where x = x,
=y = 1/2 (Glauber dynamics) or 1/3 (Kawasaki dynamics). The latter
result is traced back to the excess density contained in the domain walls,
which has to be redistributed over the scale L(f) during the growth. A
similar effect is predicted for various other ordered structures as well,
provided their order parameter degeneracy p > 3. We find further that the
structure factor can be expressed in scaled form.

- Crossover effects near 7, (an in the conserved case also near 7' = 0)
prevent us from checking whether the scaling function really is universal (as
the domains near 7, are probably quite spherical and at low temperatures
rather anisotropic, one might expect the scaling function to reflect this
behavior and hence be temperature and density dependent). Finally we
note that quenches to T = 0 in the conserved case freeze in a glasslike state
with an irregular arrangement of very small domains.
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