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The growth of ordered domains  in lattice gas models, which occurs after the 
system is quenched from infinite temperature to a state below the critical 
temperature T~, is studied by Monte  Carlo simulation. For a square lattice with 
repulsion between nearest and next-nearest neighbors, which in equilibrium 
exhibits fourfold degenerate (2 • 1) superstructures, the t ime-dependent energy 
E(t), domain size L(t), and structure function S(q,t) are obtained, both for 
Glauber  dynamics (no conservation law) and the case with conserved density 
(Kawasaki dynamics). At late times the energy excess and halfwidth of the 
structure factor decrease proportional to t - x ,  while L(t) oc t x, where the expo- 
nent  x = 1 /2  for Glauber dynamics and x ~  1/3 for Kawasaki d~namics. In 
addition, the structure factor satisfies a scaling law S(k , t )= t2xS(ktX). The 
smaller exponent  for the conserved density case is traced back to the excess 
density contained in the walls between ordered domains  which must  be redis- 
tributed during growth. Quenches to T > T~, T = T C (where we estimate dy- 
namic critical exponents) and T = 0 are also considered. In the latter case, the 
system becomes frozen in a glasslike domain pattern far from equilibrium when 
using Kawasaki dynamics. The generalization of our results to other lattices and 
structures also is briefly discussed. 
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1. INTRODUCTION AND REVIEW OF THE PROBLEM 

Recently there has been considerable theoretical interest in the kinetics of 
domain growth in systems which are quenched from high temperatures in 
the disordered phase to a temperature below a transition temperature of an 
order-disorder transition. (~-2~ This is clearly a rather fundamental prob- 
lem in the statistical mechanics of nonlinear phenomena far from equilib- 
rium. In addition, this problem is of practical interest in metallurgy (2~'2z) 
and surface science. (23'24) By describing this problem in terms of the 
dynamics of random interfaces between domains, (1'6'15-~8) the relation to 
problems like phase separation via nucleation and spinodal decomposition, 4 
pattern formation in crystal growth, 5 and critical dynamics in low dimen- 
sions (27) can be established. 

Immediately after the quench the ordered phase appears in the form of 
extremely small and irregular domains separated by walls, since the order 
parameter always has some degeneracy corresponding to the symmetry 
which is broken at the transition, and none of the degenerate orderings is 
preferred. We here assume that only a finite number p of such degenerate 
orderings exist, as is appropriate for lattice gas models with superstructures 
commensurate with the lattice. For example, p = 2 for the ordinary Ising 
antiferromagnet, but we shall be mainly interested in orderings with p > 2; 
with the respect to static critical phenomena (zS) such models may belong 6 
to "universality classes" such as the three- or four-state Potts model 7 or the 
X Y  model with cubic anisotropy. (31~ In all these systems we expect that 
these domains coarsen, as the time t after the quench increases, and thus 
the (unfavorable) excess free energy due to the walls is reduced. In the late 
stages, the domain sizes are much larger than all microscopic lengths. Thus 
there exists a loose analogy with critical phenomena, where the order 
parameter correlation length ~ is much larger than all microscopic lengths 
and as a consequence, all quantities in the critical region are described by 
simple power laws, satisfying scaling relations, the exponents being the 
same for all systems belonging to a given universality class. (28'z9) Both with 
respect to static (28'29~ and dynamic (32~ critical phenomena, one understands 
now well which universality classes exist and has reasonably accurate 
estimates for the universal exponents involved. On the basis of the analogy 
with critical phenomena, one also expects (33) the growth law for the domain 

4 F o r  a r ecen t  review, see Ref.  25. 

5 F o r  a review, see Ref .  26. 

6 F o r  a review of the c lass i f ica t ion  of mode l s  in to  un iversa l i ty  classes  in two  d imens ions ,  see 

Ref .  29. 
7 F o r  a review, see Ref.  30. 
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size L(t), and the decay law for the internal energy excess E(t) - E(oo), 
etc., to have power-law form, 

L ( t )  t x, e ( t )  - t y (1) 
Here x, y,  etc. are some "universal" exponents. Also the structure factor 
S(q, t), which is accessible in scattering experiments, can be cast in a scaled 
form 

S(q, t) = [ L(t)  ]aS ( kL(t)}  (2) 

d being the dimensionality, the wave vector k is measured relative to the 
Bragg positions of the ordered structure Q, k = q - Q, and 5~(~ ") is some 
scaling function. Actually Eq. (2) was first proposed (33'34) and verified (35-37) 
for spinodal decomposition, where Q = 0, and later generalized to ordering 
kinetics. (7-1~ Even in the case of spinodal decomposition of solids, where 
one thinks that x = y  = 1//3, (39-41'34) the exponents are well established 
only for the regime where the growing domains of the new phase take a 
small volume fraction. For large volume fractions the growing domains 
form an interpenetrating percolation network, (42) and it is conceivable that 
there different exponents apply. (42'43) In addition, even for small volume 
fraction it is difficult to obtain an accurate description of the scaling 
function ff{~.}.(44,45) Even much less is known about ordering kinetics, 
however: the possible universality classes and their exponents and scaling 
functions have not yet been sorted out. Only for the case of twofold 
degenerate ordering (p = 2), all theories agree that x = y  = 1/2, (~-2~ and it 
makes no difference whether a quantity other than the order parameter 
(such as the density, for instance) is conserved. Even in this case, however, 
there are still serious problems in understanding dependences on parame- 
ters such as temperature. (18'2~ Even much less is known for orderings with 
larger order parameter degeneracy p. Larger p are of great physical interest; 
they occur for ordered monolayers at surfaces (e.g., p = 3 for the ~" • ~-  
structure on triangular lattices, 3 • 1 structure on rectangular lattices; p = 4 
for the 2 x 2 structure on square and triangular lattices, 2 • 1 structure on 
square lattices, 4 • 1 structure on rectangular lattices; see e.g., Ref. 29) and 
for ordered binary alloys (e.g., the CuAu ordering on the fcc lattice has 
p = 3, while the Cu3Au ordering hasp  = 4; see e.g., Ref. 46 for model phase 
diagrams). It was pointed out that for p > d + 1 one could have locked-in 
domain configurations, which would result in a domain growth law as slow 
as L(t)c~ In t. (t0 It is now realized that such a locking in of the domain 
configuration at nonzero temperature can hardly occur, and thus this law is 
not observed. (z6'17'47) Recent simulations of the p-state Potts model with 
Glauber dynamics yielded (17) x = 1/2 for p ~< 6, while for 6 <~ p <~ 26 the 
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exponent seemed to decrease continuously with increasing p, and reached a 
limiting value p ~ 0.41 for larger p. The limit p ~ ce might be physically 
applicable to the growth problem of crystalline grains in metals. (iv) A 
theoretical understanding of this p dependence of the growth law exponent 
x so far is lacking. Very recently it was suggested (48) that a chaotic 
interplay of several growth mechanisms, which compete with each other 
irrespective of the domain length scale L(t), might lead to an intermittency 
effect (like in fully turbulent fluid flow) and then decrease the exponent x 
from 1/2 to a nonuniversal smaller value. 

In the present paper we contribute to this interesting problem of 
sorting out the universality classes of domain growth by presenting and 
analyzing Monte Carlo simulations of additional models. We concentrate 
on a lattice gas model on the square lattice with repulsive interactions 
between nearest and next-nearest neighbor interactions of equal strength. 
For densities O = 1/2 or near that value, this model undergoes a second- 
order transition to the (2 • 1) structure (49) (while for densities around 
p ~  1 / 4 , 3 / 4  the phase diagram still is controversial. (49-52) This structure 
has p = 4, but it does not belong to the four-state Ports universality class, 
with respect to critical phenomena, but to the class of the X Y  model with 
cubic anisotropy. (3t~ Thus comparing our results with the four-state Ports 
results of Ref. 17 has bearing on the question whether the domain growth 
universality classes are uniquely specified by p already, or depend on other 
symmetry properties as well. Secondly, we shall conduct a comparative 
study of the model using both "Glauber dynamics ''(53'54) and "Kawasaki 
dynamics. ''(54'55~ The latter conserves the density p while the former does 
not. Domain growth at conserved density corresponds to the physical 
situation in case of chemisorbed systems, a large variety of which exist, 8 
and where domain growth can indeed be observed. (24'57) While the p (2 • 1) 
structure of O on W(112) studied in Ref. 24 has p -- 2 and hence x should 
be 1/2, in agreement with observation, (24) O on W(II0)  would be a 
realization of a (2 • 1) structure with p = 4, (56~ for instance. "Kawasaki 
dynamics ''(54's5) then models surface diffusion events. 9 On the other hand, 
the simulations using "Glauber dynamics" correspond to physisorbed 
monolayers (such as monolayers on grafoil( 29) ), which are in thermal 
equilibrium with a surrounding gas. Glauber dynamics (s3'54~ then simulates 
the random evaporation and condensation events of adsorbate atoms on 
the surface. 

We emphasize this distinction between the conserved and noncon- 
served case, because we find, in contrast to the case p = 2, that they belong 

8 For a review on chemisorbed monolayers, undergoing order-disorder transitions, see Ref. 56. 
9 See also Ref. 58 for a detailed study of surface diffusion in the present model. 
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to different universality classes of domain growth for larger p.m The 
importance of density conservation for p >/3 will be linked to the excess 
density contained in the walls between the various possible ordered do- 
mains. 

In Section 2, we give a description of our methods, and describe also 
their application to quenches which lead to a final state above T C in the 
one-phase region. In such a case, the approach to equilibrium is much 
easier to understand theoretically, and hence the simulation of this problem 
serves as an accuracy check of our methods. Particular attention will be 
paid to finite size effects. Section 3 then describes our numerical results for 
quenches to T < Tc with "Glauber dynamics" and Section 4 the results for 
quenches with "Kawasaki dynamics." Section 5 is devoted to quenches 
which lead to T = 0, where with Kawasaki dynamics a frozen-in glasslike 
domain pattern is found. Section 6 is devoted to quenches leading to T near 
T c and contains a discussion of the observed critical behavior. Section 7 
then discusses the problem of excess density in domain walls for several 
other structures and lattices, in order to show that our findings are not 
restricted to the particular model which was investigated in detail. Section 8 
then contains our conclusions. 

2. SIMULATION TECHNIQUES AND THEIR APPLICATION 
IN THE DISORDERED REGION 

We consider a square lattice of linear dimensions ~ - •  I N  and 
periodic boundary conditions. In "magnetic terminology," the Hamiltonian 
is given by 

~ ' - ~  - J n n  2 S i S j -  Jnnn ~ - H 2  Si, 
< i,j) < i,j) i= 1 

nearest neighbors next nearest neighbors 

S~= +1 (3) 

where Jnn,  Jnnn are interaction parameters between nearest and next-nearest 
neighbors, H is a magnetic field, and the sums (i, j )  run over all pairs i, j 
once. In most of our simulations, we choose Jnn = Jnnn and the units of 
temperature such that IJn~] = 1. A s  is well known, Eq. (3) is equivalent to a 
lat t ice  gas  w h e r e  each  site can  e i ther  be  o c c u p i e d  (c  i = 1) or e m p t y  ( c / =  0), 
using S~ = 1 - 2c~, which yields (omitting an unimportant constant) 

= tLNa = - ~nn 2 c i c j -  ~nnn ~ CiC j (4) 
(i,f) (/,j) 

nearest neighbors next nearest neighbors 

l0 A very brief and preliminary account of these results was also given in Ref. 59. 
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where N a = ~]U= lC i __ NO is the number of occupied sites of the lattice (p 
being the density when we measure all lengths in units of the lattice 
spacing). The chemical potential in Eq. (4) is in our case 

/z  = - 8Jn, - 2H (5) 

and the interaction parameters ~nn,~nnn are simply given as qSnn--4Jnn , 

qSnn n = 4Jnn n. 
This model undergoes a second-order transition to a (2 • 1) structure, 

at a critical temperature (for H = 0 or equivalently, O = 1/2) of about 
T c ~ 2.1. Figure 1 shows the four types of ordered domains which are 
possible in this model. In lattice gas terminology, the ordering consists of a 
succession of alternating full and empty rows. The order is fourfold 
degenerate, because full and empty rows may be interchanged (a, b), and 
they may also be oriented along the y axis (c, d) rather than along the x 
axis. 

Our simulations always start with either a random spin configuration 
(Glauber dynamics) or a randomly occupied lattice gas configuration 
consistent with a given density 0. Thus we always start from infinite 
temperature, although it would be a rather straightforward extension to first 
let the system equilibrate at some finite (high) temperature, if one wishes to 
consider quenches from that temperature. In the case of Glauber dynamics, 
we randomly select a spin, S; and flip it if its transition probability O3) 

" r W ( S i - ~  - S i )  = �89 [1 - t a n h ( 8 ~ / T ) l  (6) 

exceeds a random number ~ chosen uniformly from the interval [0, 1]. In 
Eq. (4), ~- is an arbitrary factor setting a time scale, such that W ( S i  ~ - Si) 

a b 

0 0 0 0  0 0 0 0  
0 0 0 0  0 0 0 0  
0 0 0 0  0 0 0 0  
Q O O 0  0 0 0 0  

c d 

�9 �9 �9 �9 O O O O 

O O O O �9 0 �9 0 

0 �9 �9 �9 O O O O 

�9 �9 O O 0 0 �9 0 

Fig. 1. Four  ordered  ground  s ta te  conf igura t ions  (denoted  by a, b, c, d)  of the square  lat t ice 
with neares t  and  next-neares t  ne ighbor  repuls ive interact ion.  Occup ied  sites ("spin  down" )  are 

ind ica ted  by  full circles, empty  sites ("spin  up")  by empty  circles. This  order  is deno ted  as 

(2 x 1) s tructure.  
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is a transition probability per unit time for the spin flip, and 6 ~  is the 
energy change involved in the flip. T is the temperature to which we 
quench. As is well known, (54~ Eq. (4) satisfies a detailed balance condition 
with the thermal equilibrium probability of a spin configuration P0({Si}) 
cc exp( -  ~ { S j ) /T) ,  and the approach toward equilibrium is described by 
a master equation for the probability P({ Sj}, t) that the configuration (Sj} 
occurs at time t, 

~ e ( (  Sj ) , t)  = - 2 W(S,. ~ -S i )~~  S; ) , t)  
i 

+ ~W(-S i -~S i )P( (S j~ i , -S i } , t  ) (7) 

Here the time t is proportional to the sequential label of configurations 
{ Sj} ~ generated, t = v/N if we measure time in units of attempted flips per 
spin, choosing also the time constant T equal to unity. The zero of time 
corresponds to the instant where the quench is performed (in a real 
experiment this would mean an infinitely high cooling velocity). Similarly, 
in the case of Kawasaki dynamics we randomly select an occupied site i and 
a nearest-neighbor site l i of it. Then the chosen particle is moved to the site 
l i according to the transition probability (58) 

"rW(c,~ c,,) = �89 - c,,)[ 1 - t a n h ( 6 ~ / V ) ]  (S) 

Here the factor (1 - c~) ensures that particles can only jump to neighboring 
empty sites. Owing to this factor, Eq. (8) differs from Kawasaki's original 
model where also parallel spins can be exchanged. (55~ Time is then mea- 
sured in units of attempted jumps per particle. 

If one considers quenches to very low temperature, after a short 
transient period almost all attempted spin flips (or particle jumps, respec- 
tively) would involve an energy cost 6~f ~ > 0, and since then 6~,~/T >> 1, 
are almost always unsuccessful since the transition probability is so small. 
This inefficiency is particularly cumbersome for the "Kawasaki dynamics," 
since energy changes typically are nearly a factor two larger than for 
"Glauber dynamics." Thus a more efficient algorithm has been devel- 
oped, (6~ which extends the so-called "n-fold way," developed by Bortz et 
al. (61) for Glauber dynamics, to Kawasaki's dynamics. This algorithm 
samples preferentially the "active bonds," which have 6;~f ~ < 0, by selecting 
particle-hole pairs not completely at random but with a probability propor- 
tional to their transition probability. Thus every move is successful, but the 
time increment after each move is different and has to be computed from 
the algorithm itself. But is has been shown and carefully tested, that with 
the appropriately rescaled time one obtains physical results from this 
algorithm which are identical with the ordinary algorithm. While this new 
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algorithm in the late stages of a domain growth simulation typically 
performs one or two orders of magnitude faster than the standard code, the 
situation actually is reverse in the initial stages, where anyhow a larger 
fraction of particle moves has 8 ; ~  < 0. Thus simulations at quenches to 
very low temperature were performed in a sort of "hybrid algorithm," 
which was the standard one up to a time between t -- 1000-3000 MCS (1 
MCS -- 1 Monte Carlo step per particle), and then the program switched to 
the new algorithm. More details can be found in Ref. 60. 

Lattice sizes used were in the range 40 • 40 up to 800 • 800, in order 
to watch out for finite size effects; the bulk of our calculations were 
performed for lattice sizes 80 • 80 or 120 • 120, respectively. There are 
several ways in which finite size limits the accuracy of the simulation: 

(i) The correlation length of order parameter fluctuations in an 
equilibrium state is large. This occurs only for quenches very close to T c, 
and will not be important for the numerical data presented below. 

(ii) The average domain size L(t) after some time t is large. 
Both for quenches to T -- T c and for quenches to T < Tc (T  > 0 for 

"Kawasaki dynamics") we expect L(t)-+ ~z in the thermodynamic limit. 
Hence only such times t were considered where L(t)<<~/N [in practice we 
stopped at L(t) ~ - / 4 . ]  

(iii) As there are only four kinds of domains present the volume 
fractions of which will fluctuate, in the late stages there is the possibility 
that the kind of domains whose volume fraction has a distinct majority 
may start to form a percolating object (extending in one or both lattice 
directions over the entire lattice). If this occurs, it surely affects the domain 
growth rates. While we found evidence for this domain percolation rather 
frequently, when L(t)~/-N/2, it occurred only very rarely for L(t) 
~<~/N/4. We expect this problem to be more serious for the case of three 
dimensions, where percolation phenomena occur at much lower volume 
fractions than in two dimensions. (62) 

(iv) Owing to the periodic boundary conditions, wavevectors q in the 
structure factor S(q, t) can not occur in a continuum, but only for discrete 
values. 

q =  {qx,qy} = ~ -  {vx,Vy} (9) 

with ux, {y integers in the range - ] - N  < p~, ~y <,/'N. As a result not only 
the structure factor S(q, t) of an infinite system is inaccurately represented, 
particularly if L(t) >> 1, but also mode-coupling effects due to the conserva- 
tion law for the density in the case of "Kawasaki dynamics" will be 
affected, since the conservation law leads to "hydrodynamic slowing 
down ''(63'54) for q ~  0, but this slowing down is rounded off at the smallest 
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wavevector [ql = ~ r / f N .  We shall study this phenomenon in more detail 
for T > T~ below. 

(v) In a finite system, the energy per spin E will show spontaneous 
stochastic fluctuations in thermal equilibrium; the mean-square amplitude 
of these fluctuations is given by the fluctuation relation ( E  2) - ( E )  2 
= T2C/N,  C being the specific heat per spin in equilibrium. Consequently, 
when we study the decay of the energy excess E(t) - ( E )  in a quench, we 
are limited to times where this excess exceeds the level of statistical 
fluctuations distinctly, if we use a single quenching run. It turns out that for 
the system sizes used this hardly would be satisfactory, and hence it turns 
out necessary to average the results over many quenching runs, using 
different (but equivalent) initial conditions for each. Typically, we average 
over the order of 102 samples, while for the 400 • 400 system we generated 
four samples only; and for the 800 • 800 system we used a single run. Since 
one large system is equivalent to a large number of smaller subsystems, the 
statistical accuracy of the energy relaxation is automatically better for the 
large system. Somewhat surprisingly, we did not confirm this averaging 
property for quantities growing in time, such as the average domain size 
L(t):  one run for the 800 • 800 system is, particularly in the initial stages, 
significantly noisier than the average of 100 systems taken for the size 
80 • 80, although this involves precisely the same number of total spins 
(see Fig. 15 below). We feel that this is due to the fact that fluctuations 
present in the initial state are also amplified during a transient period of 
time, as the initially homogeneous state at the temperature to which the 
quench leads is highly unstable. Thus the level of such fluctuations, which 
are then seen as fluctuations in L(t), reaches a much larger value than one 
would predict from the above statistical considerations. The transient 
amplification of fluctuations around a state evolving in time so far has been 
considered only in the context of spinodal decomposition. (64) 

We now return to problem (iv), discussing the relaxation of energy in 
the regime of the disordered phase. With no conservation law, i.e., Glauber 
dynamics, the energy after an initial transient period, where the relaxation 
is governed by nonlinear effects, must relax exponentially fast toward 
equilibrium. This "linear regime" where the equilibrium relaxation time 
dominates, should near T c only be reached, however, when E ( t ) -  ( E )  
ec [1 - T~ T~] 1- ~, where a is the specific heat exponent and the proportion- 
ality constant is of order unity. (65'66) In order to be able to see both the 
nonlinear and linear regimes in the energy relaxation, we hence have 
chosen T = 2.5 which exceeds Tc by about 20%. Figure 2 shows the results 
of such simulations of relaxation for both Glauber and Kawasaki dynam- 
ics. In fact, while the relaxation in the Glauber case is distinctly nonex- 
ponential for t ~< 10, the data are consistent with an exponential decay for 
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Fig. 2. (a) Relaxation of energy per spin (measured also in units of IJnnl) plotted vs. time on 
the semilogarithmic scale (straight line indicates exponential decay), for Glauber single 
spin-flip dynamics, H = 0 (i.e., P = 0.5), and a quench temperature T = 2.5. Results for sizes 
80 • 80, 120 • 120, and 200 • 200 have been averaged over 405, 81, and 81 runs, respectively. 
(b) Same as (a) but for Kawasaki spin exchange (i.e., particle hopping) dynamics. 

t >~ 10. It is quite hard to establish this asymptotic decay law precisely, 
however, since for t ~ 25 the energy excess E(t)- (E) is of the order of 
10 -2 only, and in spite of the large number of samples hampered by 
statistical fluctuations there already. But at least it is gratifying that there 
are no statistically significant finite-size effects. 

The simulation data for the case with conserved density at first sight 
look similar (Fig. 2b). This fact is surprising since a simple argument <33) 
shows that one there expects a different decay law. From Eq. (4) we note 
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that the equilibrium energy can be written 

( E )  = - ~2 q~(q) Seq(q ) (10) 
q 

where g,(q) is the Fourier transform of the interactions 

q~(q) = + ~  ~ exp{ - i q  �9 (r+ - r+)) 
j, nearest 

neighbors of i 

+ Onnn ~ exp ( - iq" (ri -- rj) } ( l 1) 
j,  next nearest 
neighbors of i 

and Seq(q) -  (C(--q)c(q)} is the structure factor in equilibrium, 

1 Seq(q) = ~ Z exp( iq. (r k - rl)}(ckct} (12) 
k,l 

Now the conservation law of the density implies that in the limit q--> 0, 
t--> ~ ,  q2t = finite, the structure factor approaches equilibrium exponen- 
tially with a factor exp(-Dq2t) ,  D being the (collective) diffusion con- 
stant. (33'54'63~ As a consequence, the relaxation of E(t) will contain a term 

E(t) - ( E )  ~ ~ q,(q)Seq(q)exp(-Dq2t) (13) 
q 

In the limit considered the q dependence of q}(q)Seq(q ) can be neglected, 
and hence, in two dimensions 

E(g) - -  ( E )  07_ +(0)Seq(0) ~-~ e x p ( -  Dq2t) f dqexp(- Dq2t) cc t - '  (14) 
q 

Additional exponentially fast decaying terms at late times always will be 
negligibly small in comparison with this term exhibiting power-law decay. 

In order to check for this decay, we replot the data of Fig. 2 in log-log 
form (see Fig. 3). In the Glauber case, the data exhibit in this plot much 
curvature and quickly reach a slope much larger than unity. This indicates 
that a power-law decay is not appropriate, as expected. But in the Ka- 
wasaki case, too, although there is less curvature in the late stages one 
reaches a slope distinctly larger than unity, namely, about 1.2, in disagree- 
ment with the theoretical answer, Eq. (14), that the slope asymptotically 
should be unity. 

The clue to explain this discrepancy lies in a small but systematic 
variation of the data with finite size, which is beyond the statistical error in 
Figs. 2b, 3b, in contrast to Figs. 2a, 3a. This small variation with size must 
here be expected because of the discreteness of q space: thus the step in Eq. 
(14) leading from ~ q  to fdq  is not fully justified in a finite lattice. In Fig. 4 
we have studied this finite-size effect, by just calculating ~ q e x p ( -  Dq2t) for 
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Fig. 3. Same data as Fig, 2, but replotted in log-log form, for the Glauber case (a) and 
Kawasaki case (b). Numbers at the curves indicate the effective exponent near that time. A 
"length" L(t) included in case (a) is defined for T > Tr from {N[~(t) + ~2(t)1}1/2, of Eq. 
(15). 

finite lattices summing over the allowed q values as specified in Eq. (9). In  
fact, over the first two decades of decay (i.e., on a comparable  ordinate 
scale as Fig. 3b) one sees a pat tern of behavior  very similar to the 
simulation: there are small but  systematic size effects leading to a quicker 
decay than occurs in the infinite system, and giving rise to a curvature 
which expresses crossover to an asymptotical ly exponential  decay propor-  
tional to exp(-DTr2t/N), rather than exhibiting clearly the correct t - l  
decay law. 

We  have presented this example in detail because it vividly illustrates 
the difficulty of properly analyzing computer  experiments on asymptot ic  
decay laws (or growth laws, respectively): with somewhat  less statistics, one 
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Fig. 4. Log-log plot of ~ q e x p ( -  Dq2t) vs. Dt for various finite lattices. 

would  not  be able to see any  systematic  size effects in Figs. 2b, 3b at all, 
and  in the absence  of knowledge  what  to expect  one might  easily conclude 
that  the exponent  of the decay  is 1.2 or even larger. As a consequence,  it is 
necessary to obta in  da ta  with very good statistical accuracy  over  as wide a 
range of lattice sizes and  of times as possible, in order  to draw reliable 
conclusions.  

3. ORDERING KINETICS WITH "GLAUBER DYNAMICS" 

Again  a r a n d o m  spin conf igurat ion is used as initial state for  the 
quench,  but  now we consider final tempera tures  T and  field H such that  
the equil ibrium would be an ordered state (Fig. 5). Only the case H = 0 has 
been studied and  hence p = 0.5, and  the tempera tures  chosen were T = 1.33 
and  T = 0.75 ( temperatures  in the critical region, T = 2.0, 2.1, and  2.2, 
respectively, will be considered in Section 6, while the case T = 2.5 was 
discussed in the previous section). Dividing the system into four  sublattices 
corresponding to a 2 • 2 unit  cell, the two-order  pa rame te r  componen t s  ~b 1, 
~z of the (2 • 1) s tructure (Fig. 1) can be expressed in terms of the 
sublatt ice magnet iza t ions  ml, m2, ms, m 4 a s  {rap = (l/N)~i~,Si} 

~PI = ml + m2 - m3 - m4, ~2 = ml - m 2 -  ms + m4 (15) 

The  four  fully ordered possibilities of the (2 x 1) structure correspond 
s imply to the cases (~Pl = 1, ~P2 = 0), (gq = - 1, tp2 = 0), (~Pl = 0, 4~2 = 1), and  
(~Pl = 0, ~2 = - 1 ) ,  respectively. In the s imulat ions of quenching,  all four  
types of ordered  states will occur  and  hence it is convenient  to describe the 
degree of order  by  a roo t -mean-square  order  pa rame te r  [~pz(t)+ ~2(t)]I/2 
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Fig. 5. Phase diagram of the Ising square lattice with nearest and next-nearest neighbor 
repulsion. Solid curve is the phase boundary between ordered and disordered states according 
to the transfer matrix calculation of Ref. 50, the dash-dotted curve the phase boundary 
estimated in Ref. 49 from Monte Carlo simulations on a 40 • 40 lattice, and the broken curve 
is a contour of constant correlation length ~ = 40, according to Ref. 50. Open circles (crosses) 
indicate states to which quenches with nonconserved (or conserved, respectively) density have 
been made. Note that the identification of the structures near p = 0.25, 0.75 is controver- 
sial, (49-52) and hence quenches only in the region of the uncontroversial (2 • 1) structure are 
made. 

= [~2(/)]1/2. By decomposing ~ into its contributions from individual unit 
cells ~ki(t) we obtain ff2(t)= N-2~, i j~i( t )  �9 ~j(t). In the late stages of 
growth, the scalar product ~i(t) �9 ~j(t) ~ +2 T, +r  being the equilibrium value 
of the order parameter if i a n d j  are sites within the same domain; if i a n d j  
are in different domains, the projection will average to zero. Hence we can 
estimate the order of magnitude of ~2(t) as follows: 

~p2(t) ,~ N - 2N u ( t)L 4 (t)~b2r (16) 

where the ~ 9  was broken up in a sum over the Nd(t ) domains existing at 
time t, and the sum ~o.~bi(t). ~j(t) where i, j are restricted to be in the same 
domain, of average linear dimension Ld(t),  yields LJ(t)qJ 2. Since any site 
must belong to a domain we conclude N = Na(t)LZ(t) and hence Eq, (16) 
reduces to 

~2(t) ~ U - 'L 2 (t)~p2r (17) 

This consideration suggests to define an effective domain linear dimension 
L(t)  as follows: 

L ( 0  - - ~  [+,~(t) + +~(t)] ' /2/+T 0 8 )  
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In an ordered monodomain sample, we have L(t) = ~/-N, of course. We also 
note that the quantity ~p2(t)N2 would be experimentally simply accessible 
as the sum of the scattering intensities at the Bragg positions Q~, Q2 of the 
ordered structure, 

~p2(t)N2 = S(Q 1, t ) +  S(Q 2 ,t) (19) 

where Q] = ~r(1,0) and Q2 = ~r(0, 1) in our case. 
Figure 6 shows then both the domain size L(t) {Eq. (18)} and the 

excess energy AE(t)= E(t)-(E>. After a short transient period, both 

10 z 

10 
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05 ,,,..~ " " ~  ....''t"I" 

AE(f) "~... 0.5 

10-1 , , 
1 10 102 t 10 3 

102 b ' ' . , - " I ~  
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L(t} 

,i 
,',E(t) -~.~...%,.. 

1 10 10 z f 10 ~ 

Fig. 6. Log- log plot of AE(t) and L(t) vs. time, for the temperatures T =  0.75 (a) and 
T = 1.33 (b) Numbers  at the curves are estimates of the exponents x and y,  respectively. 
Temperature is measured in units of IJnnl, and time in Monte Carlo steps per spin. Both cases 
represent averages over 45 samples of 80 X 80 lattices. 



532 Sadiq and Binder 

L(t) and AE(t) follow nicely straight lines, i.e., they evolve in time 
according to the proposed power laws, Eq. (1), with 

x = y = l / 2  (20) 

independent of temperature. The scaling relation x = y  has been generally 
proposed ~ on the grounds that in the late stages the excess energy in the 
system is due to the energy contained in the domain walls, and hence 
should be of order [J,n[Na(t)Lff-l(t)/N in d dimensions. Invoking again 
Nd(t)Lff(t ) = N, the relation AE(t) c~ L -  t(t) follows. 

The exponent x = 1 /2  agrees with results obtained for Ising models 
with nonconserved order parameter and p = 2 (1'5'7'9'12'15) as well as with 
recent numerical simulations for a p-state Ports model ~v) with p ~< 6. Our 
present results, as well as those of Ref. 17, indicate that the "locking-in 
mechanism" of domains (l't]) suggested to occur forp  > d + 1, which would 
apply in our case, is not effective [as mentioned in the Introduction, this 
mechanism would imply L(t) oc In t, i.e., x = y = 0]. 

We feel that the result x = 1/2 is not just due to a trivial extension of 
theories such as those (~5J8) which deal with motion of random interfaces, 
because in our model there occur several types of walls (Fig. 7). While both 
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Fig. 7. Different types of walls between the ordered phases a, b, c, d of the (2 • 1) structure 
(cf. Fig. 1): (a) "superheavy" wall; (b) "superlight" wall; (c) "heavy" wall; (d) "light wall"; 
(e) "antiphase boundary"; (f) "45 ~ wall." Underneath the arrangement of full and empty sites 
for each wall we display the profiles ~ (z )  and E'(z) of the magnetization and the energy, 
averaged along the wall, in the direction z perpendicular to the wall. All cases refer to T = 0. 
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the  " s u p e r h e a v y "  a n d  " s u p e r l i g h t "  wa l l  a re  ene rge t i ca l ly  ve ry  u n f a v o r a b l e ,  

a n d  h e n c e  such  wal ls  do  no  l o n g e r  o c c u r  a f te r  a shor t  t r ans i en t  pe r iod ,  the  

ene rgy  excess  of  the  o the r  types  of  wal ls  is the  s a m e  a t  T -  0. T h u s  o n e  

m a y  h a v e  c o m p e t i t i o n  b e t w e e n  d i f f e r en t  types  of  walls.  Of  course ,  one  

m i g h t  e x p e c t  t ha t  at  f in i te  t e m p e r a t u r e  e n t r o p y  c o n s i d e r a t i o n s  m i g h t  lift  the  

d e g e n e r a c y  b e t w e e n  these  walls,  l e a d i n g  to a lower  f ree  ene rgy  of  o n e  (or 

some)  wall(s) t h a n  the  o t h e r  ones.  If  this occurs ,  one  w o u l d  e x p e c t  t ha t  the  

f r ac t i on  of  less f a v o r a b l e  wal ls  d imin i shes  wi th  i nc r ea s ing  t ime  af te r  the  

q u e n c h .  

I n  o r d e r  to c h e c k  w h e t h e r  this ac tua l ly  h a p p e n s  we  h a v e  p r i n t ed  o u t  

m a n y  " s n a p s h o t  p i c t u r e s "  of  d o m a i n  pa t te rns ,  c h a r a c t e r i z i n g  the  va r i ous  

types  of  wal ls  s imply  by  their  dens i ty  excess  (e.g., Fig.  8). A t  leas t  at  the  

=[  
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Fig. 8. A series of snapshot pictures of a time evolution of a 120 • 120 system at T = 1.33 
and H = 0. Occupied sites are denoted by a circle if they belong to a domain of type a, by a 
triangle if they belong to domain of type b, by a lying cross if they belong to domain of type c, 
and by a standing cross if they belong to a domain of type d (cf. Fig. l). Atoms belonging to 
walls are not shown. Times shown are t = 10 (a), 20 (c), 40 (e), 60 (g), 100 (i), 140 (k), 200 (m), 
300 (o) and 400 (q). An alternative description in terms of the different walls at the 
corresponding times is shown in b, d, f, h, j, l, n, p, and r. There a 2 • 2 unit cell containing 
four atoms (superheavy wall) is denoted by a solid dot, a unit cell containing three atoms by a 
plus, a unit cell containing two atoms in diagonal configuration by an open circle, a unit cell 
containing one atom only by a vertical bar, and a cell with no atoms (superlight wall) by a 
star. 
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Fig .  8. C o n t i n u e d .  

considered temperatures, all types of walls seem to survive with about  equal 
probability. This means that either the walls remain degenerate in free 
energy up to the critical point, or their free energy differences are so small 
that one would have to watch the domain pattern over a significantly 
longer period of time than we were able to do to see this effect. Of course, 
for @nn 4= @nnn a simple "bond-counting" analysis shows that already at 
T = 0 the degeneracy is lifted. 

Next we turn to the behavior of the structure factor. We have obtained 
both S(Q l + k, t) and S(Q 2 + k, t), choosing the direction of k perpendicu- 
lar to Q~ or Q2, respectively, since then the calculation of the structure 
factor simplifies and the program runs much faster than for general 
direction of k. Then we add both terms together and thus obtain the analog 
of Eq. (19) for finite k. By this procedure we greatly reduce the statistical 
fluctuations. The resulting structure factor S(q, t) (Fig. 9) is qualitatively 
similar to structure factors obtained for Ising models with p - - 2 .  (8-~~ 
Figure 10 demonstrates that for T = 0.75 and 1.33 it indeed nicely satisfies 
the scaling hypothesis, Eq. (2). Thus the halfwidth o(t) of the structure 
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factor also satisfies a power law, Fig. 11 : 

o(t) oc t -xo, with x o= x =  1/2 (21) 

It would be interesting to calculate the scaling functions both for the case 
p = 2 and the present case with high precision, in order to be able to check 
whether they also are identical. For T - -  2.0, on the other hand, we observe 
more pronounced deviations from scaling (Fig. 10c), and the various 
exponents seem to no longer agree with each other (Fig. 1 lc). We interpret 
these observations as crossover toward critical relaxation (Section 6). 

As a remark on the accuracy of our numerical procedures, we note 
that [S(~r, 0] 1/2, which has been smoothed by integrating over time inter- 
vals At (Fig. 9), agrees very well with the data for L(t) obtained directly in 
independent calculations from Eq. (18) where +~(t), ~ ( t )  were recorded at 
much shorter time intervals and also the smoothing interval could be 
chosen much smaller (i.e., of the order of the distance between two 
successive points in Fig. 6 at each time). 

4. ORDERING KINETICS WITH "KAWASAKI  DYNAMICS"  

In this section we consider quenches to the same temperatures in the 
ordered region as in the previous section, but treat now the case of 
conserved density. Again we start with a discussion of the time evolution of 
the domain size L(t) and energy excess 2xE(t), Fig. 12. While for T = 1.33 
after a short transient period both L(t) and AE(t) evolve according to the 
power laws Eq. (1), over several decades in time, with 

x = y ~ 0.35 (22) 

the power-law description for T = 0.75 is not so good: over an intermediate 
interval of domain sizes 4~< L(t)<~ 10, a power-law behavior is observed 
but with distinctly smaller exponents, x = y ~ 0 . 2 0 .  The curvature seen 
particularly in AE(t) at late times may indicate that there a crossover sets 
in to the exponents quoted in Eq. (22). Since we find (Section 5) that in 
quenches to T = 0 with conserved density the system gets trapped in a 
metastable domain state, i.e., curves for L(t),AE(t) bend over to a finite 
value L ( m )  and a nonzero value AE(m)  at late times, i.e., x = y  = 0 at 
T = 0, we feel that the data at T = 0.75 are affected by crossover effects, 
i.e., the system nearly gets trapped over intermediate time scales. 

Of course, arguing that the simulation data for T = 0.75 may reflect 
crossover one must ask oneself whether the data for T =  1.33 may be 
affected by crossover as well. It is difficult to rule this out with certainty: 
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120 • 120 system; in case (b) the lattice sizes and number of samples is indicated in the figure. 
Numbers at the curves indicate the estimates for the resulting exponents x, y. 

tak ing  da t a  closer to the phase  b o u n d a r y  at  T = 1.33 by  vary ing  0 (Fig.  13) 
one starts  to see effects of crossover  toward  crit ical re laxa t ion  (see Sect ion 
6): effective exponents  xeff, 7eff are no longer  equal,  while Xeff stays a round  
the value given by  Eq. (22), Yeff seems to increase  significantly.  As we shall  
show in Sect ion 6, the scal ing law x = y  is no longer  val id  for cri t ical  
re laxat ion.  Similarly,  when we stay at  p = 1 / 2  bu t  increase T to 1.61, the 
exponent  xeff increases to abou t  0.4, while y stays at  abou t  0.35. Al though  
such a sys temat ic  var ia t ion  of exponents  with pa rame te r s  such as densi ty  o r  
t empera tu re  could  be a real  effect, as suggested by  Fu rukawa ,  (4s) our  da t a  
are cer ta inly  also consis tent  with the in te rpre ta t ion  tha t  in the l imit  t --> 
the exponents  x, y are universal  inside the whole  o rdered  region 0 < T 
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< Tc(p), but near T = 0 and near T~(p) one observes crossover to other 
mechanisms controlling the asymptotic relaxation at T =- 0 and T- -  T~(p), 
respectively. The correct values of the asymptotic exponents are then most 
reliably estimated in a region of the phase diagram where one stays away 
from the crossover regimes as far as possible. Since the point T =  1.33, 
0 = 1 /2  fulfils this criterion, the time evolution at this point shows no 
evidence for crossover, and the exponents x, y estimated for other points in 
the phase diagram around this point (Fig. 5) are similar, we suggest that Eq. 
(22), within error limits of about __+0.05, should be the true asymptotic 
exponent. This conclusion is corroborated by Fig. 14, where the exponent 
yell(t), fitted to various time intervals, is plotted vs. temperature for p 
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= 1/2. The proposed asymptotic behavior foryeff(t--> ~ )  ~ -y  is 

y = 0 ,  V = 0 ;  y = 0 . 3 5 •  0 <  T <  T~; 
(23) 

Y = Y c ,  T = T c ;  y = l ,  T > T  c 

Since in the previous section we have seen that the result y = 1 for T > T~ 
is easily missed because of finite-size effects, it is absolutely essential, of 
course, to make sure that the estimates given in Eqs. (22), (23) are no 
artefacts of finite size as well. Thus we have studied the time evolution at 
T = 1.33, p = 0.5 varying the lattice size from 80 • 80 to 800 • 800, Fig. 15. 
It  is seen that the resulting estimates are scattered in the interval 0.3 <~ x, 
y ~< 0.4, but we are not able to detect any systematic decrease of y with 
increasing size, as it happened for T > T~. The absence of finite-size effects 
which would be due to the lack of small k in terms relaxing with factors 
e D~ is plausible, of course, since at the chosen temperature the collec- 
tive diffusion constant D in thermal equilibrium is extremely small, (Ss) and 
hence the "bulk" contribution to the energy relaxation is negligible in 
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comparison with the contribution due to walls. For t ~  10 2, there is a 
consistently smaller effective exponent in the energy relaxation. We inter- 
pret this as the onset of crossover effects to the locking-in of domain states 
at T = 0, where over intermediate regime of times (seen more clearly at 
T = 0.75) exponents intermediate between y = 0 and y = 0.35 are seen. 
Note that for ~/N /> 200 the average domain  size reached at the time where 
the simulation was stopped is still about an order of magnitude smaller 
than ~/N, or even less. Thus the other finite size effects discussed in Section 
2 are not expected to be of importance here either. 

What  is remarkable in Fig. 15 is the slow approach to the thermody- 
namic limit of L(t), as far as statistical fluctuations are concerned. This 
behavior is in marked contrast to the behavior of AE(t): fluctuations of 
2xE(t) are reduced with increasing size N in the expected way. This 
observation calls for a statistical theory for fluctuations of domain growth. 

The structure factor S(q, t) was obtained as described in Section 3 and 
is shown in Fig. 16; again evidence for the scaling law Eq. (2) is obtained 
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(Fig. 17). It appears that the scaling behavior is not strictly valid when the 
time variation of L(t) is not yet in the asymptotic regime, as can be seen 
from the systematic discrepancies in the wings of the distribution (Fig. 
17b). This observation is further evidence that the exponents x ~ y  ~ 0.23 
as obtained in Fig. 18b are not yet characteristic for the asymptotic 
behavior but rather due to crossover effects, as discussed above. 

Figure 19 then shows typical snapshot pictures of the domain patterns 
and the type of walls prevailing during domain growth with conserved 
density. As in the nonconserved case, domain shapes are rather irregular 
throughout growth, and four types of walls ("heavy," "light," "antiphase," 
"45 degree") seem to persist throughout the late stages. 

FIG. 19 a [ 
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Fig. 19. A series of snapshot pictures of a time evolution of a 120 x 120 system at T = 1.33 
and # = 0.45 at conserved density. Occupied sites are denoted by a circle if they belong to a 
domain of type a, by a triangle for domain b, by a lying cross if they belong to a domain of 
type c, and by a standing cross if they belong to a domain of type d (cf. Fig. 1). Atoms 
belonging to walls are not shown. Times shown are t = 10 (a), 20 (c), 40 (e), 65 (g), 100 (i), 140 
(k), 200 (m), 300 (o), 500 (q), 800 (s), 1200 (u), 1700 (w), an alternative description in terms of 
the different walls at the corresponding times is shown in (b)-(x). There a 2 x 2 unit cell 
containing four atoms (superheavy wall) is denoted by a solid dot, a unit cell containing three 
atoms by a plus, a unit cell containing two atoms in diagonal configuration by an open circle, 
a unit celt containing one atom only by a vertical bar, and a cell with no atoms (supertight 
wall) by a star. 
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It then is natural to ask, why the conservation of density should make 
any difference and lead to even a significantly smaller value of the 
exponent x than in the case without conservation law. The answer to this 
question is simply that the density excess (or deficit, respectively) contained 
in the "heavy" or "light" walls needs to be redistributed by long-range 
diffusion, when the density is conserved, and some walls have to grow or 
shrink and finally disappear, or to diffuse as a whole, in order to allow for 
the growth of the domains. Clearly, the larger the domains become the 
smaller the gradients in the diffusion fields must become, similar as in the 
Lifshitz-Slyozov mechanism of coarsening in the late stages of phase 
separation. (39) Since in the latter case this slowing down of the diffusion 
controls the growth rate and leads to the law L ( t )  ec t 1/3, we suspect that 
Eqs. (22), (23) really should be interpreted as x = y = 1/3 (0 < T < To) for 
the present case as well. 

In order to make these ideas more quantitative, we have studied the 
excess density (in spin terms, the excess magnetization 2xm) in subsystem 
blocks of size Le • L 8, for L B from 4 to 20, see, e.g., Fig. 20. It  is seen that 
for smaller L 8 the distribution sharpens up much more quickly than for 
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larger L B . This fact is seen more clearly in Fig. 21 a, where the decrease of 
the relative width of these distributions is plotted vs. time. Defining a 
characteristic time t(LB) for each block size by 

L { t ( L B )  } = L B (24) 

we can find t(LB) immediately from Fig. 12a. Rescaling t with t(LB) one 
finds that now all curves ~-mZ(-Q/~-mm2(-0) superimpose on a single curve 
(Fig. 21b). This result is very gratifying: it directly shows that the time 
decay of the long wavelength density fluctuations is indeed coupled to the 
time evolution of L(t ) ,  and in fact controls it! 

5. QUENCHES LEADING TO T = 0 AND EVIDENCE 
FOR "GLASSY" STATES 

Of course, the slowing down of the growth as T was lowered to 0.75, 
encountered in the previous section, makes one suspicious of what would 
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happen when one quenches the system to exactly T = 0. Figure 22 shows 
that then the growth of the domain size stops at about  L(t)~ 10, and also 
the decrease of the energy excess stops at about the same time ( t ~  103 
MCS per particle). In order to check for possible logarithmic laws L(t) 
cc in t, (]~) we also plotted the energy excess versus this variable (Fig. 22b). 
It is seen that such a logarithmic law is not obeyed over any significant 
range of times. Unfortunately there seems to occur some systematic varia- 
tion with finite size in our data, for which we do not have an explanation. 
Thus also our results for the structure factor in these quenches to T = 0 
have to be taken with care (Fig. 23). It is quite remarkable, however, that 
the structure factor gets extremely broad wings. This shape of S(q, oo) is in 
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marked contrast to the scaled structure factor appearing in the late stages 
of finite temperature quenches (Fig. 17a). 

Finally Fig. 22c exhibits typical pictures of the frozen-in glassy config- 
urations. 

6. S IMULATION OF Q U E N C H E S  INTO THE CRIT ICAL REGION 

We first return to the case of single-spin flip dynamics (i.e., no 
conservation law). Figure 24 shows results for the time evolution of the 
energy excess and L(t ) ,  which in this case is redefined as LZ(t) ~ [~2(t) + 
+~(t)]. It  is seen that the exponents x c, Yc defined in analogy to Eq. (1) 

L2(t)  o~ t 2xc, E ( t )  - E(oo)  ~ t -y~, T = T~ (25) 

are no longer equal to each other: xc is nearly temperature independent 
over the time interval shown, x c ~ 0.42 at T = 2.0, xc ~ 0.34 at T ~  2.1 (not 
shown) and x C ~ 0.32 at T = 2.2. In contrast, Yc ~ 0.32 at T = 2.0, y~ ~ 0.40 
at T ~ 2 . 1  and between 0.5 and 1.0 at T =  2.2. The strong curvature of 
AE( t )  on the log-log plot for T = 2.2 is qualitatively similar to the behavior 
at T = 2.5 (see Fig. 2(a)), i.e., it indicates crossover to an exponential decay 
which should occur for times t of the order of the equilibrium relaxation 
time ~-, 

r oc ,~', (26) 
where ~ c e l l -  TITs]  ~ is the order parameter  correlation length, v its 
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crit ical  exponen t  (28) and  z is the dynamic  cri t ical  exponent .  (32) Similarly,  
we then expect  tha t  for t ~ ~- in L2(t) a crossover  sets in whe re  L2(t) starts 
to sa turate  at  its equi l ibr ium value, the o rder  p a r a m e t e r  suscept ibi l i ty  XT 
which near  T c behaves  as (28) Xr oc I1 - T/Tcl -~ a: ~/~. This crossover  can  
be  expressed more  quant i ta t ive ly  by  pos tu la t ing  for L(t) a d y n a m i c  scal ing 
funct ion  (32,66) 

L2(t)  = ~v/~f( t /.r) = U/, f l(  t~ -z ) (27) 

where the funct ion f(u) {or fl(u), respect ively)  tends to a cons tan t  value  for 
u--> o0, in o rder  that  L 2 ( t ~  o0) yields XT. On the other  hand,  at  T c ~ = oo 
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and ~ then must cancel out from the expression Eq. (27), since L ( t )  still is 
well defined and finite at T~. This  consideration hence yields that f l (u  ) for u 
small must behave as a power law, f l (u)  cx u 2xc, with 

x c = 7 / 2 z u  (28) 

Since the data for T < T c also show crossover at t ~ ~- to the domain 
growth ruled by the exponent x = 1/2  found in Section 3, we conclude that 
the exponent xc is probably in between the values found for T = 2.0 and 
2.1, but closer to the latter, 

x c ~ 0.37 + 0.03 (29) 

Now the static exponents y, u of this model are nonuniversal, i.e., they 
depend on the ratio of interaction constants, magnetic field, etc.  (31'49'5~ 

For our case (]Jnn] = ]Jnn.], H = 0) they have been estimated by standard 
Monte Carlo finite-size-scaling analysis (49) as ~,~0.85, 7 ~  1.5 and by 
Monte Carlo renormalization group (67) as v = 0.87 ___ 0.02 {asserting that 
y / u  = 1.75 is universal and has the same value as in the ordinary nearest- 
neighbor Ising model).  Hence Eqs. (28) and (29) yield immediately the 
estimate for the dynamic exponent z, 

z ~ 2.4 + 0.2 (30) 

A similar reasoning can be presented for the excess energy, since the critical 
part  of the energy scales as ]1 - T / T ~ ] I - ~ o :  (1 - a) / l , ,  which is rewritten 
using the hyperscaling relation (28) ds, = 2u = 2 - a as I1 - T / T c [  l -~  
cc ~ -2+ l/,.  The dynamic scaling law analogous to Eqs. (27) and (28) hence 
is found as 

E ( t )  - E ( ~ )  = ~ -2+'/~f2(t~ - z  ) (31) 

where the function f2(u) must behave as In f2(u) (x - u for u ~ ~ ,  describ- 
ing the exponential decay of the excess energy to zero, as found in Section 
3. Since E ( t )  - E ( ~ )  is finite and nonzero at T c, the powers of ~ must then 
cancel in Eq. (31), which is only possible if f2(u ) c~ u-Y c, with 

Yc = (2 - 1 / v ) z  (32) 

Concluding from our data thaty~ should be in between the values found for 
T = 2.0 and 2.1, but probably closer to the minimum value found (any 
crossover effects should enhance rather than decrease y~ in this case), we 
suggest 

y~ ~ 0.35 _+ 0.03 (33) 

Since 2 - 1 / v  ~ 0.85 + 0.03, Eqs. (32) and (33) again lead to Eq. (30). This 
result that there is a unique exponent z for all relaxing quantities is known 
as "extended dynamic scaling. ''O2) 



576 Sadiq and Binder 

While the exponent x = y =  1/2  for T <  T c both for the present 
model and the four-state Potts model, (~7) the critical behavior of the two 
models renders them into different universality classes. The dynamic expo- 
nents z for the present model has not been studied before, while the 
estimates for z in the four-state Potts model lie in the range 2.5 ~< z ~< 
2.7. (68,69) Thus, with the accuracy presently available, it is not yet possible 
to clearly distinguish the dynamic universality classes! For better accuracy, 
much larger systems are necessary to avoid finite-size rounding, and to 
obtain better statistics. The recently developed special purpose-Monte 
Carlo processors (7~ would be ideal for this purpose. Also experimental 
studies of critical dynamics of adsorbed layers via quenching experiments 
into the critical region would be desirable (other tools familiar from studies 
of three-dimensional systems, such as inelastic neutron scattering, hardly 
are applicable for adsorbed layers). 

We next turn to critical quenches in the model with conserved density. 
The above considerations immediately carry over to the present case; only 
f2(u) oc u-1 for large u, rather than decaying exponentially. Our numerical 
results are similar to the case without conservation: x c ~-,0.35 at T = 2.0 
and 2.1, while some crossover to saturation is seen at T = 2.2; similarly, 
yc ~0 . 32  at T =  2.0,y c ~0 .35  to 0.30 at T =  2.1, while crossover to the l i t  
relaxation characteristic for the disordered phase (Fig. 2) is seen at T = 2.2. 
Thus, we conclude 

xc ~ 0.35 + 0.03, yr ~ 0.33 + 0.02 (34) 
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which yields as our estimate for the exponent z in the model with conserva- 
tion law, from Eqs. (28), (32), 

z ~ 2.55 _+ 0.15 (35) 

While the estimates Eqs. (30), (35) within their error bars overlap strongly, 
there is no reason to believe that they are exactly equal. In fact, according 
to the classification of universality classes (32) the present model belongs to 
class "C," while the model without any conservation belongs to class "A." 

We also have obtained the structure factor S(q,t) for the present 
model in the critical region (Fig. 26), and study its scaling properties in 
Figs. 27 and 28. Again scaling of S(q, t) is well obeyed. A comparison with 
Fig. 17a reveals that the present scaling function S(u) decays much slower 
in its wings. To interpret this behavior, we note that dynamic scaling in the 
critical region implies ~ 

S(q, t) = ~r/2~S (k~, t~ -~ ) (36a) 

i.e., in the regime where S(~r, t) is far from saturation we have 

S(q,  t ) /  S (% Z) = (t~ -~ ) r l~S(k~ ,  t~ -~ ) (36b) 
A 

Right at T~ the ~ factors must cancel out, implying that S(k~,t~ ~) 
> (t~-~)-vh~S(ktlh).  Hence we find that the halfwidth a(t) of the 

structure factor must behave as 

o(t) ca t - ' h ,  T =  T~ (37a) 
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and S(q, t) right at T c scales as 

S(q, t) -- tv/z"S(kt '/~) (37b) 

We emphasize that this result is no longer of the form of Eq. (2), since 
defining a length l ( t )=  o- l ( t )oc t ~ one rather gets S ( q , t ) =  [l(t)] ~/~ 

(kl(t)), the power y / ~  = 2 - ~/rather than the dimensionality d as in Eq. 
(2). Note  that the quantity L(t) is this section has no longer the dimension 
of a length and also does not play the role of a characteristic length, it is 
l(t) which is the characteristic length of the problem. Unfortunately the 
data for o(t) at T = 2.0 exhibit much curvature, presumably due to cross- 
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over effects; but for T = 2.1 one can see that the exponent 1/z estimated 
from Eq. (37a) is l / z  ~ 0.41, i.e., within our error estimates consistent with 
Eq. (35). 

From the fact that S(q, t) for q v a ~r should reach a finite limit at large 
times we immediately find, from Eq. (37b) 

S(q -~ ~r, ~ )  ec k -v/p = k -(2-n), g(u)ucc u-(2-~) (38) 

Figure 29 shows that our data at T = 2.1 are indeed consistent with Eq. (38) 
(,q = 1 }.(67) For comparison, the data for the scaling function of Fig. 17a 

at T = 1.33 are included: it is seen that the behavior is quite different, if 
one would try to fit a power law one would obtain a rather large exponent, 
of the order of 3-4  instead of 1.75. We do not have enough reliable data for 
(a / c r -1 ) /o ( t )  > 1 to judge whether such a power law is a faithful 
representation of the scaling function S(u) for large u. The prediction in the 
case p --- 2 (and density not conserved) that (15) S(u) cc u -3 (for d = 3) is 
possibly also consistent with the present case. 

7. DOMAIN WALL EXCESS DENSITY 
IN VARIOUS OTHER TWO-DIMENSIONAL STRUCTURES 

In Section 4 we have seen that the conservation law for the density 
leads to domain growth exponents x = y  ~ 1/3, rather than x = y  = 1/2  as 
in the case without conservation law, and that the crucial point for this 
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change of exponents is the excess density contained in the domain walls. It 
is hence natural to ask, whether this mechanism is particular to the 
structure chosen, or whether it carries over to other cases as well. 

First we consider the c(~/2 • ~ - )  structure, for whichp -- 2, and which 
has been studied in extensive previous work. Figure 30 shows that the 
domain walls oriented parallel to the lattice direction do not  contain excess 
density. The "45 ~ wall" would contain excess density, but it energetically 
clearly is unfavorable, and hence in the late stages such walls should not 
occur. Thus, we predict that the conservation law of the density should not 

affect the exponents x, y, as there is no excess density in the walls. This is 
consistent with theories (e.g., Ref. 6} and simulations {e.g., Refs. 10 and 
20}. 

The other structure with p = 2 is the p(2 • 1) structure; on a rectangu- 
lar lattice it is reasonable to have interactions in the two lattice directions 
different from each other, and then the degeneracy between the two cases 
(a, b) and the two cases (c, d) in Fig. 1 is removed. The only important wall 
to consider is the "antiphase wall" of Fig. 7, which does not involve excess 
density as well. Hence again conservation of density should have no effect, 
and thus we predict x = y  -- 1/2 to apply, consistent with observation. (24) 

The situation is quite different, however, for all cases with p > 2. 
Consider first the (3 • 1) structure on the centered rectangular lattice (Fig. 
31). Depending on the interaction energies which stabilize this structure, it 
may be more favorable to have "antiphase boundaries" (Fig. 31a, b) or 
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each wall we display the profiles N(z) and E(z) of the magnetization and the energy, averaged 
along the wall, in the direction z perpendicular to the wall. Both cases refer to T = 0. 



Dynamics of the Formation of Two-Dimensional Ordered Structures 581 

@o~176176176176176176 ~ 

o o o o ~o o o o o 

o e o e o e o e o ~ ~ 1 7 6 1 7 6  ~ 

o o o o o ~. o o o 

m o ~  o e o ~ 1 7 6  ~  

o o o o o o o 'o o 

�9 �9 �9 �9 @ �9 �9 �9 o 

1 �9 ... ooooo i . . . . . .  
o o o o  @ o o @  o o o o o  

o o o o ~ o o o o o  o o o o o o  

�9 �9 Io o o o o io_o_o_o_o_o - O 0 0 0 ~ O @ @ O e  l i e @ e l  

o o o o l o o o o o  z e o o e e  

@ e O @ l O O O O O  o o o o o o  

O 0 0 0 ~ l @ @ o  0 0 0 0 0  
i 

�9 @ @ ~ 0  0 0 0 0 C e t l O 0 0 ~ O 0 ~ O 0 0 0 0  

213 x 213 9{z) x 2/3 9{z) x 

I13~- x x x 

0 z 0 z 0 

o) b} c) 

Fig, 31. "Antiphase boundary"  (a, b) and "heavy wall" between domains of the (3 X 1) 
phase at density O = 1/3  on the centered rectangular lattice. Profile of the dens i ty  0(z) 
averaged in the direction parallel to the interface are atso shown [in case (C) it is averaged 
over the unit  celt shown]. 

~ walls" (Fig. 31c, in the case of density P = l / 3 ;  for P = 2 /3  the rote 
of light and heavy is interchanged, of course). But now" both types of walls 
exhibit excess density, and hence we predict that conservation of density 
should lead to domain growth exponents x - - y  ~- 1/3 as in the present 
study. It would be interesting to check this experimentally for the adsorp- 
tion system H on Fe(l l0)  (7~) in which this structure has been observed. 
The situation is also similar for (p • 1) structures on this lattice withp > 4. 
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Fig. 33. Same as Fig. 32 but for the (2 x 2) lattice. Energy excess is only qualitative. 

We now turn to the ~J" • ~" structure on the triangular lattice, Fig. 32, 
which has p = 3  at 0 =  1/3 since then the sites of one of the three 
sublattices 1,2, 3 will be occupied, and the other two are empty. This 
structure already occurs if there is only a nearest-neighbor repulsive interac- 
tion on this lattice. Domain walls of the types a,b are energetically 
favorable, while the type c is unfavorable; but again every wall involves an 
excess density, and hence conservation of density should lead to x = y  

1/3 as the present study. 
More complicated is the case of the (2 • 2) structure which may occur 

on the triangular lattice (Fig. 33) or square lattice at O = 1 /4  or 0 = 3/4,  
respectively. In order to stabilize it on the triangular lattice, interactions up 
to at least next-nearest neighbors need to be included. Depending on the 
values of the interaction energies, it may be more favorable to have either 
"heavy walls" (a, c), which do involve excess density, or "antiphase bound- 
aries" (Fig. 33b), which do not, at least in the ground state. It is conceiv- 
able, however, that at nonzero temperature these walls acquire excess 
density as well owing to the phenomenon of "interracial adsorption" which 
has been shown to occur fo rp  > 2 in various models. (72) Thus we conclude 
that the typical behavior of models with p > 2 with conserved density will 
be qualitatively similar to the results obtained in the present study, with 
x = y  --- 1/3 rather than 1/2. 

8. CONCLUSIONS 

In this paper, extensive simulations of quenching experiments are 
reported, both for a model without any conservation law ("Glauber dynam- 
ics"), and a model with conserved density ("Kawasaki dynamics"); this 
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two-dimensional model undergoes a second-order transition from a disor- 
dered to a fourfold degenerate ordered state, and we consider quenches 
both to states within the disordered phase (leading to a state either above 
the transition or exactly at criticality) and to states within the ordered 
region (at nonzero as well as zero temperature). By carefully examining 
effects of finite size and of various crossover phenomena, we are able to 
sort out the asymptotic exponents governing the time evolution of the size 
of the growing domains (below Tc) or the susceptibility (above To), the 
excess energy and the structure factor. 

While above T~ the approach to equilibrium of all considered quanti- 
ties is exponential, apart from the excess energy in the case with conserved 
density which relaxes inversely proportional to the time after the quench, 
we find power laws for the relaxation right at To, which via dynamic scaling 
can all be related to a unique exponent z, with z ~ 2.4 _+ 0.2 (Glauber 
dynamics) and z ~ 2.55 _+ 0.15 (Kawasaki dynamics). Various evidences for 
the validity of dynamic scaling in both models is presented. Corresponding 
experimental studies in various chemisorbed monolayers at surfaces would 
be valuable. 

Below T c the domain size L( t )  behaves as L( t )  oz t x, the halfwidth of 
the structure factor o(t) ~ t-xo, the excess energy with L -y, where x = x~ 
= y  = 1/2 (Glauber dynamics) or 1/3 (Kawasaki dynamics). The latter 
result is traced back to the excess density contained in the domain walls, 
which has to be redistributed over the scale L( t )  during the growth. A 
similar effect is predicted for various other ordered structures as well, 
provided their order parameter degeneracy p/> 3. We find further that the 
structure factor can be expressed in scaled form. 

Crossover effects near Tc (an in the conserved case also near T = 0) 
prevent us from checking whether the scaling function really is universal (as 
the domains near T~ are probably quite spherical and at low temperatures 
rather anisotropic, one might expect the scaling function to reflect this 
behavior and hence be temperature and density dependent). Finally we 
note that quenches to T- -  0 in the conserved case freeze in a glasslike state 
with an irregular arrangement of very small domains. 
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